Daisy Chain Rotaxanes Made from Interlocked DNA Nanostructures
We report the stepwise assembly of supramolecular daisy chain rotaxanes (DCR) made of double‐stranded DNA: Small dsDNA macrocycles bearing an axle assemble into a pseudo‐DCR precursor that was connected to rigid DNA stoppers to form DCR with the macrocycles hybridized to the axles. In presence of re...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2016-04, Vol.55 (18), p.5512-5516 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5516 |
---|---|
container_issue | 18 |
container_start_page | 5512 |
container_title | Angewandte Chemie International Edition |
container_volume | 55 |
creator | Weigandt, Johannes Chung, Chia-Ling Jester, Stefan-S. Famulok, Michael |
description | We report the stepwise assembly of supramolecular daisy chain rotaxanes (DCR) made of double‐stranded DNA: Small dsDNA macrocycles bearing an axle assemble into a pseudo‐DCR precursor that was connected to rigid DNA stoppers to form DCR with the macrocycles hybridized to the axles. In presence of release oligodeoxynucleotides (rODNs), the macrocycles are released from their respective hybridization sites on the axles, leading to stable mechanically interlocked DCRs. Besides the expected threaded DCRs, certain amounts of externally hybridized structures were observed, which dissociate into dumbbell structures in presence of rODNs. We show that the genuine DCRs have significantly higher degrees of freedom in their movement along the thread axle than the hybridized DCR precursors. Interlocking of DNA in DCRs might serve as a versatile principle for constructing functional DNA nanostructures where the movement of the subunits is restricted within precisely confined tolerance ranges.
Chained up: Mechanically bonded daisy chain rotaxanes (DCRs) made from double‐stranded DNA (dsDNA) comprise a macrocycle connected to an axle bearing a stopper at its end that circumscribes the axle of a second such unit and vice versa (see image). Mechanically interlocked DCRs have higher degrees of freedom in their movement along the thread axle than the DCR‐precursors in which the macrocycles are still hybridized to the axle. |
doi_str_mv | 10.1002/anie.201601042 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4850751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1794493808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6702-66771a06b65b075abc65ccccf12ee96d95ce38e91332e4e511a81959679c8bee3</originalsourceid><addsrcrecordid>eNqFkUtPGzEUhS3Uime3XVYjsWEzqR_j1wYpCo9GhRQ1ILqzPM4NGCZjsGda8u9rFBpBF60319L9zrGPDkIfCR4QjOln23oYUEwEJriiG2ibcEpKJiV7l-8VY6VUnGyhnZTuMq8UFptoi8qMM4m30eGR9WlZjG6tb4vvobNPtoVUnNsZFPMYFsW47SA2wd3DrDiaDIuJbUPqYu-6PkLaQ-_ntknw4WXuoquT48vRl_Ls2-l4NDwrnZCYlkJISSwWteA1ltzWTnCXz5xQAC1mmjtgCjRhjEIFnBCriOZaSO1UDcB20eHK96GvFzBz0HbRNuYh-oWNSxOsN283rb81N-GnqRTPD5JscPBiEMNjD6kzC58cNE2OG_pkiNRVpZnCKqP7f6F3oY9tjmdopSssGRP8XxSRimUuQ5karCgXQ0oR5usvE2yeCzTPBZp1gVnw6XXQNf6nsQzoFfDLN7D8j50ZTsbHr83LldanDp7WWhvvjZBMcnM9OTXTH1_5xcn00kzZb270tR4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1783940653</pqid></control><display><type>article</type><title>Daisy Chain Rotaxanes Made from Interlocked DNA Nanostructures</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Weigandt, Johannes ; Chung, Chia-Ling ; Jester, Stefan-S. ; Famulok, Michael</creator><creatorcontrib>Weigandt, Johannes ; Chung, Chia-Ling ; Jester, Stefan-S. ; Famulok, Michael</creatorcontrib><description>We report the stepwise assembly of supramolecular daisy chain rotaxanes (DCR) made of double‐stranded DNA: Small dsDNA macrocycles bearing an axle assemble into a pseudo‐DCR precursor that was connected to rigid DNA stoppers to form DCR with the macrocycles hybridized to the axles. In presence of release oligodeoxynucleotides (rODNs), the macrocycles are released from their respective hybridization sites on the axles, leading to stable mechanically interlocked DCRs. Besides the expected threaded DCRs, certain amounts of externally hybridized structures were observed, which dissociate into dumbbell structures in presence of rODNs. We show that the genuine DCRs have significantly higher degrees of freedom in their movement along the thread axle than the hybridized DCR precursors. Interlocking of DNA in DCRs might serve as a versatile principle for constructing functional DNA nanostructures where the movement of the subunits is restricted within precisely confined tolerance ranges.
Chained up: Mechanically bonded daisy chain rotaxanes (DCRs) made from double‐stranded DNA (dsDNA) comprise a macrocycle connected to an axle bearing a stopper at its end that circumscribes the axle of a second such unit and vice versa (see image). Mechanically interlocked DCRs have higher degrees of freedom in their movement along the thread axle than the DCR‐precursors in which the macrocycles are still hybridized to the axle.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201601042</identifier><identifier>PMID: 27010370</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Base Sequence ; Chains ; Communication ; Communications ; daisy chain rotaxanes ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA nanotechnology ; DNA structures ; Hybridization ; Nanostructure ; nanostructures ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology - methods ; Nucleic Acid Conformation ; Nucleic Acid Hybridization ; Oligodeoxyribonucleotides - chemistry ; Oligonucleotides ; Precursors ; Rotaxanes ; Rotaxanes - chemistry ; Shafts (machine elements) ; supramolecular chemistry</subject><ispartof>Angewandte Chemie International Edition, 2016-04, Vol.55 (18), p.5512-5516</ispartof><rights>2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.</rights><rights>2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2016. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6702-66771a06b65b075abc65ccccf12ee96d95ce38e91332e4e511a81959679c8bee3</citedby><cites>FETCH-LOGICAL-c6702-66771a06b65b075abc65ccccf12ee96d95ce38e91332e4e511a81959679c8bee3</cites><orcidid>0000-0001-5878-6577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201601042$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201601042$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27010370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weigandt, Johannes</creatorcontrib><creatorcontrib>Chung, Chia-Ling</creatorcontrib><creatorcontrib>Jester, Stefan-S.</creatorcontrib><creatorcontrib>Famulok, Michael</creatorcontrib><title>Daisy Chain Rotaxanes Made from Interlocked DNA Nanostructures</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>We report the stepwise assembly of supramolecular daisy chain rotaxanes (DCR) made of double‐stranded DNA: Small dsDNA macrocycles bearing an axle assemble into a pseudo‐DCR precursor that was connected to rigid DNA stoppers to form DCR with the macrocycles hybridized to the axles. In presence of release oligodeoxynucleotides (rODNs), the macrocycles are released from their respective hybridization sites on the axles, leading to stable mechanically interlocked DCRs. Besides the expected threaded DCRs, certain amounts of externally hybridized structures were observed, which dissociate into dumbbell structures in presence of rODNs. We show that the genuine DCRs have significantly higher degrees of freedom in their movement along the thread axle than the hybridized DCR precursors. Interlocking of DNA in DCRs might serve as a versatile principle for constructing functional DNA nanostructures where the movement of the subunits is restricted within precisely confined tolerance ranges.
Chained up: Mechanically bonded daisy chain rotaxanes (DCRs) made from double‐stranded DNA (dsDNA) comprise a macrocycle connected to an axle bearing a stopper at its end that circumscribes the axle of a second such unit and vice versa (see image). Mechanically interlocked DCRs have higher degrees of freedom in their movement along the thread axle than the DCR‐precursors in which the macrocycles are still hybridized to the axle.</description><subject>Base Sequence</subject><subject>Chains</subject><subject>Communication</subject><subject>Communications</subject><subject>daisy chain rotaxanes</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA nanotechnology</subject><subject>DNA structures</subject><subject>Hybridization</subject><subject>Nanostructure</subject><subject>nanostructures</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology - methods</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic Acid Hybridization</subject><subject>Oligodeoxyribonucleotides - chemistry</subject><subject>Oligonucleotides</subject><subject>Precursors</subject><subject>Rotaxanes</subject><subject>Rotaxanes - chemistry</subject><subject>Shafts (machine elements)</subject><subject>supramolecular chemistry</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUtPGzEUhS3Uime3XVYjsWEzqR_j1wYpCo9GhRQ1ILqzPM4NGCZjsGda8u9rFBpBF60319L9zrGPDkIfCR4QjOln23oYUEwEJriiG2ibcEpKJiV7l-8VY6VUnGyhnZTuMq8UFptoi8qMM4m30eGR9WlZjG6tb4vvobNPtoVUnNsZFPMYFsW47SA2wd3DrDiaDIuJbUPqYu-6PkLaQ-_ntknw4WXuoquT48vRl_Ls2-l4NDwrnZCYlkJISSwWteA1ltzWTnCXz5xQAC1mmjtgCjRhjEIFnBCriOZaSO1UDcB20eHK96GvFzBz0HbRNuYh-oWNSxOsN283rb81N-GnqRTPD5JscPBiEMNjD6kzC58cNE2OG_pkiNRVpZnCKqP7f6F3oY9tjmdopSssGRP8XxSRimUuQ5karCgXQ0oR5usvE2yeCzTPBZp1gVnw6XXQNf6nsQzoFfDLN7D8j50ZTsbHr83LldanDp7WWhvvjZBMcnM9OTXTH1_5xcn00kzZb270tR4</recordid><startdate>20160425</startdate><enddate>20160425</enddate><creator>Weigandt, Johannes</creator><creator>Chung, Chia-Ling</creator><creator>Jester, Stefan-S.</creator><creator>Famulok, Michael</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5878-6577</orcidid></search><sort><creationdate>20160425</creationdate><title>Daisy Chain Rotaxanes Made from Interlocked DNA Nanostructures</title><author>Weigandt, Johannes ; Chung, Chia-Ling ; Jester, Stefan-S. ; Famulok, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6702-66771a06b65b075abc65ccccf12ee96d95ce38e91332e4e511a81959679c8bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Base Sequence</topic><topic>Chains</topic><topic>Communication</topic><topic>Communications</topic><topic>daisy chain rotaxanes</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA nanotechnology</topic><topic>DNA structures</topic><topic>Hybridization</topic><topic>Nanostructure</topic><topic>nanostructures</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology - methods</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic Acid Hybridization</topic><topic>Oligodeoxyribonucleotides - chemistry</topic><topic>Oligonucleotides</topic><topic>Precursors</topic><topic>Rotaxanes</topic><topic>Rotaxanes - chemistry</topic><topic>Shafts (machine elements)</topic><topic>supramolecular chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weigandt, Johannes</creatorcontrib><creatorcontrib>Chung, Chia-Ling</creatorcontrib><creatorcontrib>Jester, Stefan-S.</creatorcontrib><creatorcontrib>Famulok, Michael</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weigandt, Johannes</au><au>Chung, Chia-Ling</au><au>Jester, Stefan-S.</au><au>Famulok, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Daisy Chain Rotaxanes Made from Interlocked DNA Nanostructures</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2016-04-25</date><risdate>2016</risdate><volume>55</volume><issue>18</issue><spage>5512</spage><epage>5516</epage><pages>5512-5516</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>We report the stepwise assembly of supramolecular daisy chain rotaxanes (DCR) made of double‐stranded DNA: Small dsDNA macrocycles bearing an axle assemble into a pseudo‐DCR precursor that was connected to rigid DNA stoppers to form DCR with the macrocycles hybridized to the axles. In presence of release oligodeoxynucleotides (rODNs), the macrocycles are released from their respective hybridization sites on the axles, leading to stable mechanically interlocked DCRs. Besides the expected threaded DCRs, certain amounts of externally hybridized structures were observed, which dissociate into dumbbell structures in presence of rODNs. We show that the genuine DCRs have significantly higher degrees of freedom in their movement along the thread axle than the hybridized DCR precursors. Interlocking of DNA in DCRs might serve as a versatile principle for constructing functional DNA nanostructures where the movement of the subunits is restricted within precisely confined tolerance ranges.
Chained up: Mechanically bonded daisy chain rotaxanes (DCRs) made from double‐stranded DNA (dsDNA) comprise a macrocycle connected to an axle bearing a stopper at its end that circumscribes the axle of a second such unit and vice versa (see image). Mechanically interlocked DCRs have higher degrees of freedom in their movement along the thread axle than the DCR‐precursors in which the macrocycles are still hybridized to the axle.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>27010370</pmid><doi>10.1002/anie.201601042</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-5878-6577</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2016-04, Vol.55 (18), p.5512-5516 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4850751 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Base Sequence Chains Communication Communications daisy chain rotaxanes Deoxyribonucleic acid DNA DNA - chemistry DNA nanotechnology DNA structures Hybridization Nanostructure nanostructures Nanostructures - chemistry Nanostructures - ultrastructure Nanotechnology - methods Nucleic Acid Conformation Nucleic Acid Hybridization Oligodeoxyribonucleotides - chemistry Oligonucleotides Precursors Rotaxanes Rotaxanes - chemistry Shafts (machine elements) supramolecular chemistry |
title | Daisy Chain Rotaxanes Made from Interlocked DNA Nanostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Daisy%20Chain%20Rotaxanes%20Made%20from%20Interlocked%20DNA%20Nanostructures&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Weigandt,%20Johannes&rft.date=2016-04-25&rft.volume=55&rft.issue=18&rft.spage=5512&rft.epage=5516&rft.pages=5512-5516&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201601042&rft_dat=%3Cproquest_pubme%3E1794493808%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1783940653&rft_id=info:pmid/27010370&rfr_iscdi=true |