Daisy Chain Rotaxanes Made from Interlocked DNA Nanostructures

We report the stepwise assembly of supramolecular daisy chain rotaxanes (DCR) made of double‐stranded DNA: Small dsDNA macrocycles bearing an axle assemble into a pseudo‐DCR precursor that was connected to rigid DNA stoppers to form DCR with the macrocycles hybridized to the axles. In presence of re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2016-04, Vol.55 (18), p.5512-5516
Hauptverfasser: Weigandt, Johannes, Chung, Chia-Ling, Jester, Stefan-S., Famulok, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5516
container_issue 18
container_start_page 5512
container_title Angewandte Chemie International Edition
container_volume 55
creator Weigandt, Johannes
Chung, Chia-Ling
Jester, Stefan-S.
Famulok, Michael
description We report the stepwise assembly of supramolecular daisy chain rotaxanes (DCR) made of double‐stranded DNA: Small dsDNA macrocycles bearing an axle assemble into a pseudo‐DCR precursor that was connected to rigid DNA stoppers to form DCR with the macrocycles hybridized to the axles. In presence of release oligodeoxynucleotides (rODNs), the macrocycles are released from their respective hybridization sites on the axles, leading to stable mechanically interlocked DCRs. Besides the expected threaded DCRs, certain amounts of externally hybridized structures were observed, which dissociate into dumbbell structures in presence of rODNs. We show that the genuine DCRs have significantly higher degrees of freedom in their movement along the thread axle than the hybridized DCR precursors. Interlocking of DNA in DCRs might serve as a versatile principle for constructing functional DNA nanostructures where the movement of the subunits is restricted within precisely confined tolerance ranges. Chained up: Mechanically bonded daisy chain rotaxanes (DCRs) made from double‐stranded DNA (dsDNA) comprise a macrocycle connected to an axle bearing a stopper at its end that circumscribes the axle of a second such unit and vice versa (see image). Mechanically interlocked DCRs have higher degrees of freedom in their movement along the thread axle than the DCR‐precursors in which the macrocycles are still hybridized to the axle.
doi_str_mv 10.1002/anie.201601042
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4850751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1794493808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6702-66771a06b65b075abc65ccccf12ee96d95ce38e91332e4e511a81959679c8bee3</originalsourceid><addsrcrecordid>eNqFkUtPGzEUhS3Uime3XVYjsWEzqR_j1wYpCo9GhRQ1ILqzPM4NGCZjsGda8u9rFBpBF60319L9zrGPDkIfCR4QjOln23oYUEwEJriiG2ibcEpKJiV7l-8VY6VUnGyhnZTuMq8UFptoi8qMM4m30eGR9WlZjG6tb4vvobNPtoVUnNsZFPMYFsW47SA2wd3DrDiaDIuJbUPqYu-6PkLaQ-_ntknw4WXuoquT48vRl_Ls2-l4NDwrnZCYlkJISSwWteA1ltzWTnCXz5xQAC1mmjtgCjRhjEIFnBCriOZaSO1UDcB20eHK96GvFzBz0HbRNuYh-oWNSxOsN283rb81N-GnqRTPD5JscPBiEMNjD6kzC58cNE2OG_pkiNRVpZnCKqP7f6F3oY9tjmdopSssGRP8XxSRimUuQ5karCgXQ0oR5usvE2yeCzTPBZp1gVnw6XXQNf6nsQzoFfDLN7D8j50ZTsbHr83LldanDp7WWhvvjZBMcnM9OTXTH1_5xcn00kzZb270tR4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1783940653</pqid></control><display><type>article</type><title>Daisy Chain Rotaxanes Made from Interlocked DNA Nanostructures</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Weigandt, Johannes ; Chung, Chia-Ling ; Jester, Stefan-S. ; Famulok, Michael</creator><creatorcontrib>Weigandt, Johannes ; Chung, Chia-Ling ; Jester, Stefan-S. ; Famulok, Michael</creatorcontrib><description>We report the stepwise assembly of supramolecular daisy chain rotaxanes (DCR) made of double‐stranded DNA: Small dsDNA macrocycles bearing an axle assemble into a pseudo‐DCR precursor that was connected to rigid DNA stoppers to form DCR with the macrocycles hybridized to the axles. In presence of release oligodeoxynucleotides (rODNs), the macrocycles are released from their respective hybridization sites on the axles, leading to stable mechanically interlocked DCRs. Besides the expected threaded DCRs, certain amounts of externally hybridized structures were observed, which dissociate into dumbbell structures in presence of rODNs. We show that the genuine DCRs have significantly higher degrees of freedom in their movement along the thread axle than the hybridized DCR precursors. Interlocking of DNA in DCRs might serve as a versatile principle for constructing functional DNA nanostructures where the movement of the subunits is restricted within precisely confined tolerance ranges. Chained up: Mechanically bonded daisy chain rotaxanes (DCRs) made from double‐stranded DNA (dsDNA) comprise a macrocycle connected to an axle bearing a stopper at its end that circumscribes the axle of a second such unit and vice versa (see image). Mechanically interlocked DCRs have higher degrees of freedom in their movement along the thread axle than the DCR‐precursors in which the macrocycles are still hybridized to the axle.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201601042</identifier><identifier>PMID: 27010370</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Base Sequence ; Chains ; Communication ; Communications ; daisy chain rotaxanes ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA nanotechnology ; DNA structures ; Hybridization ; Nanostructure ; nanostructures ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology - methods ; Nucleic Acid Conformation ; Nucleic Acid Hybridization ; Oligodeoxyribonucleotides - chemistry ; Oligonucleotides ; Precursors ; Rotaxanes ; Rotaxanes - chemistry ; Shafts (machine elements) ; supramolecular chemistry</subject><ispartof>Angewandte Chemie International Edition, 2016-04, Vol.55 (18), p.5512-5516</ispartof><rights>2016 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2016. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6702-66771a06b65b075abc65ccccf12ee96d95ce38e91332e4e511a81959679c8bee3</citedby><cites>FETCH-LOGICAL-c6702-66771a06b65b075abc65ccccf12ee96d95ce38e91332e4e511a81959679c8bee3</cites><orcidid>0000-0001-5878-6577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201601042$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201601042$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27010370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weigandt, Johannes</creatorcontrib><creatorcontrib>Chung, Chia-Ling</creatorcontrib><creatorcontrib>Jester, Stefan-S.</creatorcontrib><creatorcontrib>Famulok, Michael</creatorcontrib><title>Daisy Chain Rotaxanes Made from Interlocked DNA Nanostructures</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>We report the stepwise assembly of supramolecular daisy chain rotaxanes (DCR) made of double‐stranded DNA: Small dsDNA macrocycles bearing an axle assemble into a pseudo‐DCR precursor that was connected to rigid DNA stoppers to form DCR with the macrocycles hybridized to the axles. In presence of release oligodeoxynucleotides (rODNs), the macrocycles are released from their respective hybridization sites on the axles, leading to stable mechanically interlocked DCRs. Besides the expected threaded DCRs, certain amounts of externally hybridized structures were observed, which dissociate into dumbbell structures in presence of rODNs. We show that the genuine DCRs have significantly higher degrees of freedom in their movement along the thread axle than the hybridized DCR precursors. Interlocking of DNA in DCRs might serve as a versatile principle for constructing functional DNA nanostructures where the movement of the subunits is restricted within precisely confined tolerance ranges. Chained up: Mechanically bonded daisy chain rotaxanes (DCRs) made from double‐stranded DNA (dsDNA) comprise a macrocycle connected to an axle bearing a stopper at its end that circumscribes the axle of a second such unit and vice versa (see image). Mechanically interlocked DCRs have higher degrees of freedom in their movement along the thread axle than the DCR‐precursors in which the macrocycles are still hybridized to the axle.</description><subject>Base Sequence</subject><subject>Chains</subject><subject>Communication</subject><subject>Communications</subject><subject>daisy chain rotaxanes</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA nanotechnology</subject><subject>DNA structures</subject><subject>Hybridization</subject><subject>Nanostructure</subject><subject>nanostructures</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology - methods</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic Acid Hybridization</subject><subject>Oligodeoxyribonucleotides - chemistry</subject><subject>Oligonucleotides</subject><subject>Precursors</subject><subject>Rotaxanes</subject><subject>Rotaxanes - chemistry</subject><subject>Shafts (machine elements)</subject><subject>supramolecular chemistry</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUtPGzEUhS3Uime3XVYjsWEzqR_j1wYpCo9GhRQ1ILqzPM4NGCZjsGda8u9rFBpBF60319L9zrGPDkIfCR4QjOln23oYUEwEJriiG2ibcEpKJiV7l-8VY6VUnGyhnZTuMq8UFptoi8qMM4m30eGR9WlZjG6tb4vvobNPtoVUnNsZFPMYFsW47SA2wd3DrDiaDIuJbUPqYu-6PkLaQ-_ntknw4WXuoquT48vRl_Ls2-l4NDwrnZCYlkJISSwWteA1ltzWTnCXz5xQAC1mmjtgCjRhjEIFnBCriOZaSO1UDcB20eHK96GvFzBz0HbRNuYh-oWNSxOsN283rb81N-GnqRTPD5JscPBiEMNjD6kzC58cNE2OG_pkiNRVpZnCKqP7f6F3oY9tjmdopSssGRP8XxSRimUuQ5karCgXQ0oR5usvE2yeCzTPBZp1gVnw6XXQNf6nsQzoFfDLN7D8j50ZTsbHr83LldanDp7WWhvvjZBMcnM9OTXTH1_5xcn00kzZb270tR4</recordid><startdate>20160425</startdate><enddate>20160425</enddate><creator>Weigandt, Johannes</creator><creator>Chung, Chia-Ling</creator><creator>Jester, Stefan-S.</creator><creator>Famulok, Michael</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5878-6577</orcidid></search><sort><creationdate>20160425</creationdate><title>Daisy Chain Rotaxanes Made from Interlocked DNA Nanostructures</title><author>Weigandt, Johannes ; Chung, Chia-Ling ; Jester, Stefan-S. ; Famulok, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6702-66771a06b65b075abc65ccccf12ee96d95ce38e91332e4e511a81959679c8bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Base Sequence</topic><topic>Chains</topic><topic>Communication</topic><topic>Communications</topic><topic>daisy chain rotaxanes</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA nanotechnology</topic><topic>DNA structures</topic><topic>Hybridization</topic><topic>Nanostructure</topic><topic>nanostructures</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology - methods</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic Acid Hybridization</topic><topic>Oligodeoxyribonucleotides - chemistry</topic><topic>Oligonucleotides</topic><topic>Precursors</topic><topic>Rotaxanes</topic><topic>Rotaxanes - chemistry</topic><topic>Shafts (machine elements)</topic><topic>supramolecular chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weigandt, Johannes</creatorcontrib><creatorcontrib>Chung, Chia-Ling</creatorcontrib><creatorcontrib>Jester, Stefan-S.</creatorcontrib><creatorcontrib>Famulok, Michael</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weigandt, Johannes</au><au>Chung, Chia-Ling</au><au>Jester, Stefan-S.</au><au>Famulok, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Daisy Chain Rotaxanes Made from Interlocked DNA Nanostructures</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2016-04-25</date><risdate>2016</risdate><volume>55</volume><issue>18</issue><spage>5512</spage><epage>5516</epage><pages>5512-5516</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>We report the stepwise assembly of supramolecular daisy chain rotaxanes (DCR) made of double‐stranded DNA: Small dsDNA macrocycles bearing an axle assemble into a pseudo‐DCR precursor that was connected to rigid DNA stoppers to form DCR with the macrocycles hybridized to the axles. In presence of release oligodeoxynucleotides (rODNs), the macrocycles are released from their respective hybridization sites on the axles, leading to stable mechanically interlocked DCRs. Besides the expected threaded DCRs, certain amounts of externally hybridized structures were observed, which dissociate into dumbbell structures in presence of rODNs. We show that the genuine DCRs have significantly higher degrees of freedom in their movement along the thread axle than the hybridized DCR precursors. Interlocking of DNA in DCRs might serve as a versatile principle for constructing functional DNA nanostructures where the movement of the subunits is restricted within precisely confined tolerance ranges. Chained up: Mechanically bonded daisy chain rotaxanes (DCRs) made from double‐stranded DNA (dsDNA) comprise a macrocycle connected to an axle bearing a stopper at its end that circumscribes the axle of a second such unit and vice versa (see image). Mechanically interlocked DCRs have higher degrees of freedom in their movement along the thread axle than the DCR‐precursors in which the macrocycles are still hybridized to the axle.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>27010370</pmid><doi>10.1002/anie.201601042</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-5878-6577</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2016-04, Vol.55 (18), p.5512-5516
issn 1433-7851
1521-3773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4850751
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Base Sequence
Chains
Communication
Communications
daisy chain rotaxanes
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA nanotechnology
DNA structures
Hybridization
Nanostructure
nanostructures
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotechnology - methods
Nucleic Acid Conformation
Nucleic Acid Hybridization
Oligodeoxyribonucleotides - chemistry
Oligonucleotides
Precursors
Rotaxanes
Rotaxanes - chemistry
Shafts (machine elements)
supramolecular chemistry
title Daisy Chain Rotaxanes Made from Interlocked DNA Nanostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Daisy%20Chain%20Rotaxanes%20Made%20from%20Interlocked%20DNA%20Nanostructures&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Weigandt,%20Johannes&rft.date=2016-04-25&rft.volume=55&rft.issue=18&rft.spage=5512&rft.epage=5516&rft.pages=5512-5516&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201601042&rft_dat=%3Cproquest_pubme%3E1794493808%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1783940653&rft_id=info:pmid/27010370&rfr_iscdi=true