Maternal fructose drives placental uric acid production leading to adverse fetal outcomes

Maternal metabolic diseases increase offspring risk for low birth weight and cardiometabolic diseases in adulthood. Excess fructose consumption may confer metabolic risks for both women and their offspring. However, the direct consequences of fructose intake per se are unknown. We assessed the impac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-04, Vol.6 (1), p.25091-25091, Article 25091
Hauptverfasser: Asghar, Zeenat A., Thompson, Alysha, Chi, Maggie, Cusumano, Andrew, Scheaffer, Suzanne, Al-Hammadi, Noor, Saben, Jessica L., Moley, Kelle H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25091
container_issue 1
container_start_page 25091
container_title Scientific reports
container_volume 6
creator Asghar, Zeenat A.
Thompson, Alysha
Chi, Maggie
Cusumano, Andrew
Scheaffer, Suzanne
Al-Hammadi, Noor
Saben, Jessica L.
Moley, Kelle H.
description Maternal metabolic diseases increase offspring risk for low birth weight and cardiometabolic diseases in adulthood. Excess fructose consumption may confer metabolic risks for both women and their offspring. However, the direct consequences of fructose intake per se are unknown. We assessed the impact of a maternal high-fructose diet on the fetal-placental unit in mice in the absence of metabolic syndrome and determined the association between maternal serum fructose and placental uric acid levels in humans. In mice, maternal fructose consumption led to placental inefficiency, fetal growth restriction, elevated fetal serum glucose and triglyceride levels. In the placenta, fructose induced de novo uric acid synthesis by activating the activities of the enzymes AMP deaminase and xanthine oxidase. Moreover, the placentas had increased lipids and altered expression of genes that control oxidative stress. Treatment of mothers with the xanthine oxidase inhibitor allopurinol reduced placental uric acid levels, prevented placental inefficiency and improved fetal weights and serum triglycerides. Finally, in 18 women delivering at term, maternal serum fructose levels significantly correlated with placental uric acid levels. These findings suggest that in mice, excess maternal fructose consumption impairs placental function via a xanthine oxidase/uric acid-dependent mechanism and similar effects may occur in humans.
doi_str_mv 10.1038/srep25091
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4850405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898679045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-57307f027c67b6845b90eda508d7c18d0525cfa0f3058a22e6bb7f3021875d73</originalsourceid><addsrcrecordid>eNplkU9LxDAQxYMoKqsHv4AUvKiwmqRNk14EWfwHK168eAppMl0jbVOTdsFvb8quy6q5JMP88uYxD6ETgq8ITsV18NBRhguygw4pztiUppTubr0P0HEIHzgeRouMFPvogHJCmSjyQ_T2rHrwraqTyg-6dwES4-0SQtLVSkPbx87grU6UtibpvDORsq5NalDGtoukd4kyS_DxYwUj7YZeuwbCEdqrVB3geH1P0Ov93evscTp_eXia3c6nmuGsnzKeYl5hynXOy1xkrCwwGMWwMFwTYaJppiuFqxQzoSiFvCx5LCgRnBmeTtDNSrYbygbMaNmrWnbeNsp_Saes_N1p7btcuKXMRJyPWRQ4Xwt49zlA6GVjg4a6Vi24IUjCRfSYp9k46-wP-uGGcXmREoXIeRF3HqmLFaW9CzGdamOGYDlGJjeRRfZ02_2G_AkoApcrIMRWuwC_NfKf2jdiLKC6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898679045</pqid></control><display><type>article</type><title>Maternal fructose drives placental uric acid production leading to adverse fetal outcomes</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Asghar, Zeenat A. ; Thompson, Alysha ; Chi, Maggie ; Cusumano, Andrew ; Scheaffer, Suzanne ; Al-Hammadi, Noor ; Saben, Jessica L. ; Moley, Kelle H.</creator><creatorcontrib>Asghar, Zeenat A. ; Thompson, Alysha ; Chi, Maggie ; Cusumano, Andrew ; Scheaffer, Suzanne ; Al-Hammadi, Noor ; Saben, Jessica L. ; Moley, Kelle H.</creatorcontrib><description>Maternal metabolic diseases increase offspring risk for low birth weight and cardiometabolic diseases in adulthood. Excess fructose consumption may confer metabolic risks for both women and their offspring. However, the direct consequences of fructose intake per se are unknown. We assessed the impact of a maternal high-fructose diet on the fetal-placental unit in mice in the absence of metabolic syndrome and determined the association between maternal serum fructose and placental uric acid levels in humans. In mice, maternal fructose consumption led to placental inefficiency, fetal growth restriction, elevated fetal serum glucose and triglyceride levels. In the placenta, fructose induced de novo uric acid synthesis by activating the activities of the enzymes AMP deaminase and xanthine oxidase. Moreover, the placentas had increased lipids and altered expression of genes that control oxidative stress. Treatment of mothers with the xanthine oxidase inhibitor allopurinol reduced placental uric acid levels, prevented placental inefficiency and improved fetal weights and serum triglycerides. Finally, in 18 women delivering at term, maternal serum fructose levels significantly correlated with placental uric acid levels. These findings suggest that in mice, excess maternal fructose consumption impairs placental function via a xanthine oxidase/uric acid-dependent mechanism and similar effects may occur in humans.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep25091</identifier><identifier>PMID: 27125896</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 13/51 ; 14/63 ; 631/136 ; 64/60 ; 692/163 ; 82/1 ; 82/58 ; 82/80 ; Acid production ; Allopurinol ; Allopurinol - administration &amp; dosage ; Allopurinol - pharmacology ; AMP deaminase ; AMP Deaminase - metabolism ; Animals ; Disease Models, Animal ; Enzymes ; Female ; Fetal Growth Retardation - chemically induced ; Fetal Growth Retardation - prevention &amp; control ; Fructose ; Fructose - adverse effects ; Fructose - blood ; Humanities and Social Sciences ; Lipids ; Low birth weight ; Metabolic disorders ; Metabolic syndrome ; Metabolism ; Mice ; multidisciplinary ; Offspring ; Oxidative Stress ; Placenta ; Placenta - metabolism ; Placental Insufficiency - chemically induced ; Placental Insufficiency - prevention &amp; control ; Pregnancy ; Prenatal development ; Rodents ; Science ; Triglycerides ; Triglycerides - blood ; Uric acid ; Uric Acid - metabolism ; Xanthine oxidase ; Xanthine Oxidase - antagonists &amp; inhibitors ; Xanthine Oxidase - metabolism</subject><ispartof>Scientific reports, 2016-04, Vol.6 (1), p.25091-25091, Article 25091</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Apr 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-57307f027c67b6845b90eda508d7c18d0525cfa0f3058a22e6bb7f3021875d73</citedby><cites>FETCH-LOGICAL-c504t-57307f027c67b6845b90eda508d7c18d0525cfa0f3058a22e6bb7f3021875d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4850405/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4850405/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27125896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Asghar, Zeenat A.</creatorcontrib><creatorcontrib>Thompson, Alysha</creatorcontrib><creatorcontrib>Chi, Maggie</creatorcontrib><creatorcontrib>Cusumano, Andrew</creatorcontrib><creatorcontrib>Scheaffer, Suzanne</creatorcontrib><creatorcontrib>Al-Hammadi, Noor</creatorcontrib><creatorcontrib>Saben, Jessica L.</creatorcontrib><creatorcontrib>Moley, Kelle H.</creatorcontrib><title>Maternal fructose drives placental uric acid production leading to adverse fetal outcomes</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Maternal metabolic diseases increase offspring risk for low birth weight and cardiometabolic diseases in adulthood. Excess fructose consumption may confer metabolic risks for both women and their offspring. However, the direct consequences of fructose intake per se are unknown. We assessed the impact of a maternal high-fructose diet on the fetal-placental unit in mice in the absence of metabolic syndrome and determined the association between maternal serum fructose and placental uric acid levels in humans. In mice, maternal fructose consumption led to placental inefficiency, fetal growth restriction, elevated fetal serum glucose and triglyceride levels. In the placenta, fructose induced de novo uric acid synthesis by activating the activities of the enzymes AMP deaminase and xanthine oxidase. Moreover, the placentas had increased lipids and altered expression of genes that control oxidative stress. Treatment of mothers with the xanthine oxidase inhibitor allopurinol reduced placental uric acid levels, prevented placental inefficiency and improved fetal weights and serum triglycerides. Finally, in 18 women delivering at term, maternal serum fructose levels significantly correlated with placental uric acid levels. These findings suggest that in mice, excess maternal fructose consumption impairs placental function via a xanthine oxidase/uric acid-dependent mechanism and similar effects may occur in humans.</description><subject>13/106</subject><subject>13/51</subject><subject>14/63</subject><subject>631/136</subject><subject>64/60</subject><subject>692/163</subject><subject>82/1</subject><subject>82/58</subject><subject>82/80</subject><subject>Acid production</subject><subject>Allopurinol</subject><subject>Allopurinol - administration &amp; dosage</subject><subject>Allopurinol - pharmacology</subject><subject>AMP deaminase</subject><subject>AMP Deaminase - metabolism</subject><subject>Animals</subject><subject>Disease Models, Animal</subject><subject>Enzymes</subject><subject>Female</subject><subject>Fetal Growth Retardation - chemically induced</subject><subject>Fetal Growth Retardation - prevention &amp; control</subject><subject>Fructose</subject><subject>Fructose - adverse effects</subject><subject>Fructose - blood</subject><subject>Humanities and Social Sciences</subject><subject>Lipids</subject><subject>Low birth weight</subject><subject>Metabolic disorders</subject><subject>Metabolic syndrome</subject><subject>Metabolism</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Offspring</subject><subject>Oxidative Stress</subject><subject>Placenta</subject><subject>Placenta - metabolism</subject><subject>Placental Insufficiency - chemically induced</subject><subject>Placental Insufficiency - prevention &amp; control</subject><subject>Pregnancy</subject><subject>Prenatal development</subject><subject>Rodents</subject><subject>Science</subject><subject>Triglycerides</subject><subject>Triglycerides - blood</subject><subject>Uric acid</subject><subject>Uric Acid - metabolism</subject><subject>Xanthine oxidase</subject><subject>Xanthine Oxidase - antagonists &amp; inhibitors</subject><subject>Xanthine Oxidase - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkU9LxDAQxYMoKqsHv4AUvKiwmqRNk14EWfwHK168eAppMl0jbVOTdsFvb8quy6q5JMP88uYxD6ETgq8ITsV18NBRhguygw4pztiUppTubr0P0HEIHzgeRouMFPvogHJCmSjyQ_T2rHrwraqTyg-6dwES4-0SQtLVSkPbx87grU6UtibpvDORsq5NalDGtoukd4kyS_DxYwUj7YZeuwbCEdqrVB3geH1P0Ov93evscTp_eXia3c6nmuGsnzKeYl5hynXOy1xkrCwwGMWwMFwTYaJppiuFqxQzoSiFvCx5LCgRnBmeTtDNSrYbygbMaNmrWnbeNsp_Saes_N1p7btcuKXMRJyPWRQ4Xwt49zlA6GVjg4a6Vi24IUjCRfSYp9k46-wP-uGGcXmREoXIeRF3HqmLFaW9CzGdamOGYDlGJjeRRfZ02_2G_AkoApcrIMRWuwC_NfKf2jdiLKC6</recordid><startdate>20160429</startdate><enddate>20160429</enddate><creator>Asghar, Zeenat A.</creator><creator>Thompson, Alysha</creator><creator>Chi, Maggie</creator><creator>Cusumano, Andrew</creator><creator>Scheaffer, Suzanne</creator><creator>Al-Hammadi, Noor</creator><creator>Saben, Jessica L.</creator><creator>Moley, Kelle H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160429</creationdate><title>Maternal fructose drives placental uric acid production leading to adverse fetal outcomes</title><author>Asghar, Zeenat A. ; Thompson, Alysha ; Chi, Maggie ; Cusumano, Andrew ; Scheaffer, Suzanne ; Al-Hammadi, Noor ; Saben, Jessica L. ; Moley, Kelle H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-57307f027c67b6845b90eda508d7c18d0525cfa0f3058a22e6bb7f3021875d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13/106</topic><topic>13/51</topic><topic>14/63</topic><topic>631/136</topic><topic>64/60</topic><topic>692/163</topic><topic>82/1</topic><topic>82/58</topic><topic>82/80</topic><topic>Acid production</topic><topic>Allopurinol</topic><topic>Allopurinol - administration &amp; dosage</topic><topic>Allopurinol - pharmacology</topic><topic>AMP deaminase</topic><topic>AMP Deaminase - metabolism</topic><topic>Animals</topic><topic>Disease Models, Animal</topic><topic>Enzymes</topic><topic>Female</topic><topic>Fetal Growth Retardation - chemically induced</topic><topic>Fetal Growth Retardation - prevention &amp; control</topic><topic>Fructose</topic><topic>Fructose - adverse effects</topic><topic>Fructose - blood</topic><topic>Humanities and Social Sciences</topic><topic>Lipids</topic><topic>Low birth weight</topic><topic>Metabolic disorders</topic><topic>Metabolic syndrome</topic><topic>Metabolism</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Offspring</topic><topic>Oxidative Stress</topic><topic>Placenta</topic><topic>Placenta - metabolism</topic><topic>Placental Insufficiency - chemically induced</topic><topic>Placental Insufficiency - prevention &amp; control</topic><topic>Pregnancy</topic><topic>Prenatal development</topic><topic>Rodents</topic><topic>Science</topic><topic>Triglycerides</topic><topic>Triglycerides - blood</topic><topic>Uric acid</topic><topic>Uric Acid - metabolism</topic><topic>Xanthine oxidase</topic><topic>Xanthine Oxidase - antagonists &amp; inhibitors</topic><topic>Xanthine Oxidase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asghar, Zeenat A.</creatorcontrib><creatorcontrib>Thompson, Alysha</creatorcontrib><creatorcontrib>Chi, Maggie</creatorcontrib><creatorcontrib>Cusumano, Andrew</creatorcontrib><creatorcontrib>Scheaffer, Suzanne</creatorcontrib><creatorcontrib>Al-Hammadi, Noor</creatorcontrib><creatorcontrib>Saben, Jessica L.</creatorcontrib><creatorcontrib>Moley, Kelle H.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asghar, Zeenat A.</au><au>Thompson, Alysha</au><au>Chi, Maggie</au><au>Cusumano, Andrew</au><au>Scheaffer, Suzanne</au><au>Al-Hammadi, Noor</au><au>Saben, Jessica L.</au><au>Moley, Kelle H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maternal fructose drives placental uric acid production leading to adverse fetal outcomes</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-04-29</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>25091</spage><epage>25091</epage><pages>25091-25091</pages><artnum>25091</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Maternal metabolic diseases increase offspring risk for low birth weight and cardiometabolic diseases in adulthood. Excess fructose consumption may confer metabolic risks for both women and their offspring. However, the direct consequences of fructose intake per se are unknown. We assessed the impact of a maternal high-fructose diet on the fetal-placental unit in mice in the absence of metabolic syndrome and determined the association between maternal serum fructose and placental uric acid levels in humans. In mice, maternal fructose consumption led to placental inefficiency, fetal growth restriction, elevated fetal serum glucose and triglyceride levels. In the placenta, fructose induced de novo uric acid synthesis by activating the activities of the enzymes AMP deaminase and xanthine oxidase. Moreover, the placentas had increased lipids and altered expression of genes that control oxidative stress. Treatment of mothers with the xanthine oxidase inhibitor allopurinol reduced placental uric acid levels, prevented placental inefficiency and improved fetal weights and serum triglycerides. Finally, in 18 women delivering at term, maternal serum fructose levels significantly correlated with placental uric acid levels. These findings suggest that in mice, excess maternal fructose consumption impairs placental function via a xanthine oxidase/uric acid-dependent mechanism and similar effects may occur in humans.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27125896</pmid><doi>10.1038/srep25091</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-04, Vol.6 (1), p.25091-25091, Article 25091
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4850405
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 13/106
13/51
14/63
631/136
64/60
692/163
82/1
82/58
82/80
Acid production
Allopurinol
Allopurinol - administration & dosage
Allopurinol - pharmacology
AMP deaminase
AMP Deaminase - metabolism
Animals
Disease Models, Animal
Enzymes
Female
Fetal Growth Retardation - chemically induced
Fetal Growth Retardation - prevention & control
Fructose
Fructose - adverse effects
Fructose - blood
Humanities and Social Sciences
Lipids
Low birth weight
Metabolic disorders
Metabolic syndrome
Metabolism
Mice
multidisciplinary
Offspring
Oxidative Stress
Placenta
Placenta - metabolism
Placental Insufficiency - chemically induced
Placental Insufficiency - prevention & control
Pregnancy
Prenatal development
Rodents
Science
Triglycerides
Triglycerides - blood
Uric acid
Uric Acid - metabolism
Xanthine oxidase
Xanthine Oxidase - antagonists & inhibitors
Xanthine Oxidase - metabolism
title Maternal fructose drives placental uric acid production leading to adverse fetal outcomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maternal%20fructose%20drives%20placental%20uric%20acid%20production%20leading%20to%20adverse%20fetal%20outcomes&rft.jtitle=Scientific%20reports&rft.au=Asghar,%20Zeenat%20A.&rft.date=2016-04-29&rft.volume=6&rft.issue=1&rft.spage=25091&rft.epage=25091&rft.pages=25091-25091&rft.artnum=25091&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep25091&rft_dat=%3Cproquest_pubme%3E1898679045%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898679045&rft_id=info:pmid/27125896&rfr_iscdi=true