Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography
The mammary gland extracellular matrix (ECM) is comprised of biopolymers, primarily collagen I, that are created and maintained by stromal fibroblasts. ECM remodeling by fibroblasts results in changes in ECM fiber spacing (pores) that have been shown to play a critical role in the aggressiveness of...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2016-04, Vol.110 (8), p.1858-1868 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1868 |
---|---|
container_issue | 8 |
container_start_page | 1858 |
container_title | Biophysical journal |
container_volume | 110 |
creator | Blackmon, Richard L. Sandhu, Rupninder Chapman, Brian S. Casbas-Hernandez, Patricia Tracy, Joseph B. Troester, Melissa A. Oldenburg, Amy L. |
description | The mammary gland extracellular matrix (ECM) is comprised of biopolymers, primarily collagen I, that are created and maintained by stromal fibroblasts. ECM remodeling by fibroblasts results in changes in ECM fiber spacing (pores) that have been shown to play a critical role in the aggressiveness of breast cancer. However, minimally invasive methods to measure the spatial distribution of ECM pore areas within tissues and in vitro 3D culture models are currently lacking. We introduce diffusion-sensitive optical coherence tomography (DS-OCT) to image the nanoscale porosity of ECM by sensing weakly constrained diffusion of gold nanorods (GNRs). DS-OCT combines the principles of low-coherence interferometry and heterodyne dynamic light scattering. By collecting co- and cross-polarized light backscattered from GNRs within tissue culture, the ensemble-averaged translational self-diffusion rate, DT, of GNRs is resolved within ∼3 coherence volumes (10 × 5 μm, x × z). As GNRs are slowed by intermittent collisions with ECM fibers, DT is sensitive to ECM porosity on the size scale of their hydrodynamic diameter (∼46 nm). Here, we validate the utility of DS-OCT using pure collagen I gels and 3D mammary fibroblast cultures seeded in collagen/Matrigel, and associate differences in artificial ECM pore areas with gel concentration and cell seed density. Across all samples, DT was highly correlated with pore area obtained by scanning electron microscopy (R2 = 0.968). We also demonstrate that DS-OCT can accurately map the spatial heterogeneity of layered samples. Importantly, DS-OCT of 3D mammary fibroblast cultures revealed the impact of fibroblast remodeling, where the spatial heterogeneity of matrix porosity was found to increase with cell density. This provides an unprecedented view into nanoscale changes in artificial ECM porosity over effective pore diameters ranging from ∼43 to 360 nm using a micron-scale optical imaging technique. In combination with the topical deposition of GNRs, the minimally invasive nature of DS-OCT makes this a promising technology for studying tissue remodeling processes. |
doi_str_mv | 10.1016/j.bpj.2016.03.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4850325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349516300637</els_id><sourcerecordid>1785744444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-ac2731d233ad78619be8bfe371b2a6d4590d8f17f3a804533d47bc9bec31a9ae3</originalsourceid><addsrcrecordid>eNp9kdGK1DAYhYO4uOPqA3gjBW-8aU2apE0RBBnX3YGVBV29DWn6dyalTbpJO-y8jc_ik5ky67J6YW4S-L__kHMOQq8Izggmxbsuq8cuy-MzwzTDhD1BK8JZnmIsiqdohTEuUsoqfoqeh9BhTHKOyTN0mpeEVAXjKwSbQW2N3Sbnd5NXGvp-7pVPvqjJm7vkKwyugX6Zb-yvnz_M5F1SH5JPpm3nYJxNv4ENZjJ7SK7HyWjVJ2u3Aw9WQ3LjBrf1atwdXqCTVvUBXt7fZ-j75_Ob9WV6dX2xWX-8SjVnfEqVzktKmpxS1ZSiIFUNom6BlqTOVdEwXuFGtKRsqRKYcUobVtY6UpoSVSmgZ-jDUXec6wEaDTaa6uXozaD8QTpl5N8Ta3Zy6_aSCY5pzqPA23sB725nCJMcTFhSURbcHCQpBS_ZciL65h-0c7O30d5CCV4IXC4UOVLauxA8tA-fIVguJcpOxhLlUqLEVMYS487rxy4eNv60FoH3RwBilnsDXgZtlsgb40FPsnHmP_K_AT-ur5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1788568074</pqid></control><display><type>article</type><title>Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Blackmon, Richard L. ; Sandhu, Rupninder ; Chapman, Brian S. ; Casbas-Hernandez, Patricia ; Tracy, Joseph B. ; Troester, Melissa A. ; Oldenburg, Amy L.</creator><creatorcontrib>Blackmon, Richard L. ; Sandhu, Rupninder ; Chapman, Brian S. ; Casbas-Hernandez, Patricia ; Tracy, Joseph B. ; Troester, Melissa A. ; Oldenburg, Amy L.</creatorcontrib><description>The mammary gland extracellular matrix (ECM) is comprised of biopolymers, primarily collagen I, that are created and maintained by stromal fibroblasts. ECM remodeling by fibroblasts results in changes in ECM fiber spacing (pores) that have been shown to play a critical role in the aggressiveness of breast cancer. However, minimally invasive methods to measure the spatial distribution of ECM pore areas within tissues and in vitro 3D culture models are currently lacking. We introduce diffusion-sensitive optical coherence tomography (DS-OCT) to image the nanoscale porosity of ECM by sensing weakly constrained diffusion of gold nanorods (GNRs). DS-OCT combines the principles of low-coherence interferometry and heterodyne dynamic light scattering. By collecting co- and cross-polarized light backscattered from GNRs within tissue culture, the ensemble-averaged translational self-diffusion rate, DT, of GNRs is resolved within ∼3 coherence volumes (10 × 5 μm, x × z). As GNRs are slowed by intermittent collisions with ECM fibers, DT is sensitive to ECM porosity on the size scale of their hydrodynamic diameter (∼46 nm). Here, we validate the utility of DS-OCT using pure collagen I gels and 3D mammary fibroblast cultures seeded in collagen/Matrigel, and associate differences in artificial ECM pore areas with gel concentration and cell seed density. Across all samples, DT was highly correlated with pore area obtained by scanning electron microscopy (R2 = 0.968). We also demonstrate that DS-OCT can accurately map the spatial heterogeneity of layered samples. Importantly, DS-OCT of 3D mammary fibroblast cultures revealed the impact of fibroblast remodeling, where the spatial heterogeneity of matrix porosity was found to increase with cell density. This provides an unprecedented view into nanoscale changes in artificial ECM porosity over effective pore diameters ranging from ∼43 to 360 nm using a micron-scale optical imaging technique. In combination with the topical deposition of GNRs, the minimally invasive nature of DS-OCT makes this a promising technology for studying tissue remodeling processes.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2016.03.014</identifier><identifier>PMID: 27119645</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biophysics ; Biopolymers ; Biotechnology ; Cell Biophysics ; Collagen ; Collagen Type I - metabolism ; Diffusion ; Extracellular Matrix - metabolism ; Fibroblasts - cytology ; Gold - chemistry ; Humans ; Imaging, Three-Dimensional ; Interferometry ; Nanotubes - chemistry ; Porosity ; Rats ; Scanning electron microscopy ; Tomography ; Tomography, Optical Coherence - methods</subject><ispartof>Biophysical journal, 2016-04, Vol.110 (8), p.1858-1868</ispartof><rights>2016 Biophysical Society</rights><rights>Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Apr 26, 2016</rights><rights>2016 Biophysical Society. 2016 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-ac2731d233ad78619be8bfe371b2a6d4590d8f17f3a804533d47bc9bec31a9ae3</citedby><cites>FETCH-LOGICAL-c545t-ac2731d233ad78619be8bfe371b2a6d4590d8f17f3a804533d47bc9bec31a9ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4850325/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349516300637$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27119645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blackmon, Richard L.</creatorcontrib><creatorcontrib>Sandhu, Rupninder</creatorcontrib><creatorcontrib>Chapman, Brian S.</creatorcontrib><creatorcontrib>Casbas-Hernandez, Patricia</creatorcontrib><creatorcontrib>Tracy, Joseph B.</creatorcontrib><creatorcontrib>Troester, Melissa A.</creatorcontrib><creatorcontrib>Oldenburg, Amy L.</creatorcontrib><title>Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The mammary gland extracellular matrix (ECM) is comprised of biopolymers, primarily collagen I, that are created and maintained by stromal fibroblasts. ECM remodeling by fibroblasts results in changes in ECM fiber spacing (pores) that have been shown to play a critical role in the aggressiveness of breast cancer. However, minimally invasive methods to measure the spatial distribution of ECM pore areas within tissues and in vitro 3D culture models are currently lacking. We introduce diffusion-sensitive optical coherence tomography (DS-OCT) to image the nanoscale porosity of ECM by sensing weakly constrained diffusion of gold nanorods (GNRs). DS-OCT combines the principles of low-coherence interferometry and heterodyne dynamic light scattering. By collecting co- and cross-polarized light backscattered from GNRs within tissue culture, the ensemble-averaged translational self-diffusion rate, DT, of GNRs is resolved within ∼3 coherence volumes (10 × 5 μm, x × z). As GNRs are slowed by intermittent collisions with ECM fibers, DT is sensitive to ECM porosity on the size scale of their hydrodynamic diameter (∼46 nm). Here, we validate the utility of DS-OCT using pure collagen I gels and 3D mammary fibroblast cultures seeded in collagen/Matrigel, and associate differences in artificial ECM pore areas with gel concentration and cell seed density. Across all samples, DT was highly correlated with pore area obtained by scanning electron microscopy (R2 = 0.968). We also demonstrate that DS-OCT can accurately map the spatial heterogeneity of layered samples. Importantly, DS-OCT of 3D mammary fibroblast cultures revealed the impact of fibroblast remodeling, where the spatial heterogeneity of matrix porosity was found to increase with cell density. This provides an unprecedented view into nanoscale changes in artificial ECM porosity over effective pore diameters ranging from ∼43 to 360 nm using a micron-scale optical imaging technique. In combination with the topical deposition of GNRs, the minimally invasive nature of DS-OCT makes this a promising technology for studying tissue remodeling processes.</description><subject>Animals</subject><subject>Biophysics</subject><subject>Biopolymers</subject><subject>Biotechnology</subject><subject>Cell Biophysics</subject><subject>Collagen</subject><subject>Collagen Type I - metabolism</subject><subject>Diffusion</subject><subject>Extracellular Matrix - metabolism</subject><subject>Fibroblasts - cytology</subject><subject>Gold - chemistry</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional</subject><subject>Interferometry</subject><subject>Nanotubes - chemistry</subject><subject>Porosity</subject><subject>Rats</subject><subject>Scanning electron microscopy</subject><subject>Tomography</subject><subject>Tomography, Optical Coherence - methods</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kdGK1DAYhYO4uOPqA3gjBW-8aU2apE0RBBnX3YGVBV29DWn6dyalTbpJO-y8jc_ik5ky67J6YW4S-L__kHMOQq8Izggmxbsuq8cuy-MzwzTDhD1BK8JZnmIsiqdohTEuUsoqfoqeh9BhTHKOyTN0mpeEVAXjKwSbQW2N3Sbnd5NXGvp-7pVPvqjJm7vkKwyugX6Zb-yvnz_M5F1SH5JPpm3nYJxNv4ENZjJ7SK7HyWjVJ2u3Aw9WQ3LjBrf1atwdXqCTVvUBXt7fZ-j75_Ob9WV6dX2xWX-8SjVnfEqVzktKmpxS1ZSiIFUNom6BlqTOVdEwXuFGtKRsqRKYcUobVtY6UpoSVSmgZ-jDUXec6wEaDTaa6uXozaD8QTpl5N8Ta3Zy6_aSCY5pzqPA23sB725nCJMcTFhSURbcHCQpBS_ZciL65h-0c7O30d5CCV4IXC4UOVLauxA8tA-fIVguJcpOxhLlUqLEVMYS487rxy4eNv60FoH3RwBilnsDXgZtlsgb40FPsnHmP_K_AT-ur5Q</recordid><startdate>20160426</startdate><enddate>20160426</enddate><creator>Blackmon, Richard L.</creator><creator>Sandhu, Rupninder</creator><creator>Chapman, Brian S.</creator><creator>Casbas-Hernandez, Patricia</creator><creator>Tracy, Joseph B.</creator><creator>Troester, Melissa A.</creator><creator>Oldenburg, Amy L.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160426</creationdate><title>Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography</title><author>Blackmon, Richard L. ; Sandhu, Rupninder ; Chapman, Brian S. ; Casbas-Hernandez, Patricia ; Tracy, Joseph B. ; Troester, Melissa A. ; Oldenburg, Amy L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-ac2731d233ad78619be8bfe371b2a6d4590d8f17f3a804533d47bc9bec31a9ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biophysics</topic><topic>Biopolymers</topic><topic>Biotechnology</topic><topic>Cell Biophysics</topic><topic>Collagen</topic><topic>Collagen Type I - metabolism</topic><topic>Diffusion</topic><topic>Extracellular Matrix - metabolism</topic><topic>Fibroblasts - cytology</topic><topic>Gold - chemistry</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional</topic><topic>Interferometry</topic><topic>Nanotubes - chemistry</topic><topic>Porosity</topic><topic>Rats</topic><topic>Scanning electron microscopy</topic><topic>Tomography</topic><topic>Tomography, Optical Coherence - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blackmon, Richard L.</creatorcontrib><creatorcontrib>Sandhu, Rupninder</creatorcontrib><creatorcontrib>Chapman, Brian S.</creatorcontrib><creatorcontrib>Casbas-Hernandez, Patricia</creatorcontrib><creatorcontrib>Tracy, Joseph B.</creatorcontrib><creatorcontrib>Troester, Melissa A.</creatorcontrib><creatorcontrib>Oldenburg, Amy L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blackmon, Richard L.</au><au>Sandhu, Rupninder</au><au>Chapman, Brian S.</au><au>Casbas-Hernandez, Patricia</au><au>Tracy, Joseph B.</au><au>Troester, Melissa A.</au><au>Oldenburg, Amy L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2016-04-26</date><risdate>2016</risdate><volume>110</volume><issue>8</issue><spage>1858</spage><epage>1868</epage><pages>1858-1868</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The mammary gland extracellular matrix (ECM) is comprised of biopolymers, primarily collagen I, that are created and maintained by stromal fibroblasts. ECM remodeling by fibroblasts results in changes in ECM fiber spacing (pores) that have been shown to play a critical role in the aggressiveness of breast cancer. However, minimally invasive methods to measure the spatial distribution of ECM pore areas within tissues and in vitro 3D culture models are currently lacking. We introduce diffusion-sensitive optical coherence tomography (DS-OCT) to image the nanoscale porosity of ECM by sensing weakly constrained diffusion of gold nanorods (GNRs). DS-OCT combines the principles of low-coherence interferometry and heterodyne dynamic light scattering. By collecting co- and cross-polarized light backscattered from GNRs within tissue culture, the ensemble-averaged translational self-diffusion rate, DT, of GNRs is resolved within ∼3 coherence volumes (10 × 5 μm, x × z). As GNRs are slowed by intermittent collisions with ECM fibers, DT is sensitive to ECM porosity on the size scale of their hydrodynamic diameter (∼46 nm). Here, we validate the utility of DS-OCT using pure collagen I gels and 3D mammary fibroblast cultures seeded in collagen/Matrigel, and associate differences in artificial ECM pore areas with gel concentration and cell seed density. Across all samples, DT was highly correlated with pore area obtained by scanning electron microscopy (R2 = 0.968). We also demonstrate that DS-OCT can accurately map the spatial heterogeneity of layered samples. Importantly, DS-OCT of 3D mammary fibroblast cultures revealed the impact of fibroblast remodeling, where the spatial heterogeneity of matrix porosity was found to increase with cell density. This provides an unprecedented view into nanoscale changes in artificial ECM porosity over effective pore diameters ranging from ∼43 to 360 nm using a micron-scale optical imaging technique. In combination with the topical deposition of GNRs, the minimally invasive nature of DS-OCT makes this a promising technology for studying tissue remodeling processes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27119645</pmid><doi>10.1016/j.bpj.2016.03.014</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2016-04, Vol.110 (8), p.1858-1868 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4850325 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present); Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animals Biophysics Biopolymers Biotechnology Cell Biophysics Collagen Collagen Type I - metabolism Diffusion Extracellular Matrix - metabolism Fibroblasts - cytology Gold - chemistry Humans Imaging, Three-Dimensional Interferometry Nanotubes - chemistry Porosity Rats Scanning electron microscopy Tomography Tomography, Optical Coherence - methods |
title | Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20Extracellular%20Matrix%20Remodeling%20In%C2%A0Vitro%20by%20Diffusion-Sensitive%20Optical%20Coherence%20Tomography&rft.jtitle=Biophysical%20journal&rft.au=Blackmon,%20Richard%20L.&rft.date=2016-04-26&rft.volume=110&rft.issue=8&rft.spage=1858&rft.epage=1868&rft.pages=1858-1868&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2016.03.014&rft_dat=%3Cproquest_pubme%3E1785744444%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1788568074&rft_id=info:pmid/27119645&rft_els_id=S0006349516300637&rfr_iscdi=true |