Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography

The mammary gland extracellular matrix (ECM) is comprised of biopolymers, primarily collagen I, that are created and maintained by stromal fibroblasts. ECM remodeling by fibroblasts results in changes in ECM fiber spacing (pores) that have been shown to play a critical role in the aggressiveness of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2016-04, Vol.110 (8), p.1858-1868
Hauptverfasser: Blackmon, Richard L., Sandhu, Rupninder, Chapman, Brian S., Casbas-Hernandez, Patricia, Tracy, Joseph B., Troester, Melissa A., Oldenburg, Amy L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1868
container_issue 8
container_start_page 1858
container_title Biophysical journal
container_volume 110
creator Blackmon, Richard L.
Sandhu, Rupninder
Chapman, Brian S.
Casbas-Hernandez, Patricia
Tracy, Joseph B.
Troester, Melissa A.
Oldenburg, Amy L.
description The mammary gland extracellular matrix (ECM) is comprised of biopolymers, primarily collagen I, that are created and maintained by stromal fibroblasts. ECM remodeling by fibroblasts results in changes in ECM fiber spacing (pores) that have been shown to play a critical role in the aggressiveness of breast cancer. However, minimally invasive methods to measure the spatial distribution of ECM pore areas within tissues and in vitro 3D culture models are currently lacking. We introduce diffusion-sensitive optical coherence tomography (DS-OCT) to image the nanoscale porosity of ECM by sensing weakly constrained diffusion of gold nanorods (GNRs). DS-OCT combines the principles of low-coherence interferometry and heterodyne dynamic light scattering. By collecting co- and cross-polarized light backscattered from GNRs within tissue culture, the ensemble-averaged translational self-diffusion rate, DT, of GNRs is resolved within ∼3 coherence volumes (10 × 5 μm, x × z). As GNRs are slowed by intermittent collisions with ECM fibers, DT is sensitive to ECM porosity on the size scale of their hydrodynamic diameter (∼46 nm). Here, we validate the utility of DS-OCT using pure collagen I gels and 3D mammary fibroblast cultures seeded in collagen/Matrigel, and associate differences in artificial ECM pore areas with gel concentration and cell seed density. Across all samples, DT was highly correlated with pore area obtained by scanning electron microscopy (R2 = 0.968). We also demonstrate that DS-OCT can accurately map the spatial heterogeneity of layered samples. Importantly, DS-OCT of 3D mammary fibroblast cultures revealed the impact of fibroblast remodeling, where the spatial heterogeneity of matrix porosity was found to increase with cell density. This provides an unprecedented view into nanoscale changes in artificial ECM porosity over effective pore diameters ranging from ∼43 to 360 nm using a micron-scale optical imaging technique. In combination with the topical deposition of GNRs, the minimally invasive nature of DS-OCT makes this a promising technology for studying tissue remodeling processes.
doi_str_mv 10.1016/j.bpj.2016.03.014
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4850325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349516300637</els_id><sourcerecordid>1785744444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-ac2731d233ad78619be8bfe371b2a6d4590d8f17f3a804533d47bc9bec31a9ae3</originalsourceid><addsrcrecordid>eNp9kdGK1DAYhYO4uOPqA3gjBW-8aU2apE0RBBnX3YGVBV29DWn6dyalTbpJO-y8jc_ik5ky67J6YW4S-L__kHMOQq8Izggmxbsuq8cuy-MzwzTDhD1BK8JZnmIsiqdohTEuUsoqfoqeh9BhTHKOyTN0mpeEVAXjKwSbQW2N3Sbnd5NXGvp-7pVPvqjJm7vkKwyugX6Zb-yvnz_M5F1SH5JPpm3nYJxNv4ENZjJ7SK7HyWjVJ2u3Aw9WQ3LjBrf1atwdXqCTVvUBXt7fZ-j75_Ob9WV6dX2xWX-8SjVnfEqVzktKmpxS1ZSiIFUNom6BlqTOVdEwXuFGtKRsqRKYcUobVtY6UpoSVSmgZ-jDUXec6wEaDTaa6uXozaD8QTpl5N8Ta3Zy6_aSCY5pzqPA23sB725nCJMcTFhSURbcHCQpBS_ZciL65h-0c7O30d5CCV4IXC4UOVLauxA8tA-fIVguJcpOxhLlUqLEVMYS487rxy4eNv60FoH3RwBilnsDXgZtlsgb40FPsnHmP_K_AT-ur5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1788568074</pqid></control><display><type>article</type><title>Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Blackmon, Richard L. ; Sandhu, Rupninder ; Chapman, Brian S. ; Casbas-Hernandez, Patricia ; Tracy, Joseph B. ; Troester, Melissa A. ; Oldenburg, Amy L.</creator><creatorcontrib>Blackmon, Richard L. ; Sandhu, Rupninder ; Chapman, Brian S. ; Casbas-Hernandez, Patricia ; Tracy, Joseph B. ; Troester, Melissa A. ; Oldenburg, Amy L.</creatorcontrib><description>The mammary gland extracellular matrix (ECM) is comprised of biopolymers, primarily collagen I, that are created and maintained by stromal fibroblasts. ECM remodeling by fibroblasts results in changes in ECM fiber spacing (pores) that have been shown to play a critical role in the aggressiveness of breast cancer. However, minimally invasive methods to measure the spatial distribution of ECM pore areas within tissues and in vitro 3D culture models are currently lacking. We introduce diffusion-sensitive optical coherence tomography (DS-OCT) to image the nanoscale porosity of ECM by sensing weakly constrained diffusion of gold nanorods (GNRs). DS-OCT combines the principles of low-coherence interferometry and heterodyne dynamic light scattering. By collecting co- and cross-polarized light backscattered from GNRs within tissue culture, the ensemble-averaged translational self-diffusion rate, DT, of GNRs is resolved within ∼3 coherence volumes (10 × 5 μm, x × z). As GNRs are slowed by intermittent collisions with ECM fibers, DT is sensitive to ECM porosity on the size scale of their hydrodynamic diameter (∼46 nm). Here, we validate the utility of DS-OCT using pure collagen I gels and 3D mammary fibroblast cultures seeded in collagen/Matrigel, and associate differences in artificial ECM pore areas with gel concentration and cell seed density. Across all samples, DT was highly correlated with pore area obtained by scanning electron microscopy (R2 = 0.968). We also demonstrate that DS-OCT can accurately map the spatial heterogeneity of layered samples. Importantly, DS-OCT of 3D mammary fibroblast cultures revealed the impact of fibroblast remodeling, where the spatial heterogeneity of matrix porosity was found to increase with cell density. This provides an unprecedented view into nanoscale changes in artificial ECM porosity over effective pore diameters ranging from ∼43 to 360 nm using a micron-scale optical imaging technique. In combination with the topical deposition of GNRs, the minimally invasive nature of DS-OCT makes this a promising technology for studying tissue remodeling processes.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2016.03.014</identifier><identifier>PMID: 27119645</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biophysics ; Biopolymers ; Biotechnology ; Cell Biophysics ; Collagen ; Collagen Type I - metabolism ; Diffusion ; Extracellular Matrix - metabolism ; Fibroblasts - cytology ; Gold - chemistry ; Humans ; Imaging, Three-Dimensional ; Interferometry ; Nanotubes - chemistry ; Porosity ; Rats ; Scanning electron microscopy ; Tomography ; Tomography, Optical Coherence - methods</subject><ispartof>Biophysical journal, 2016-04, Vol.110 (8), p.1858-1868</ispartof><rights>2016 Biophysical Society</rights><rights>Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Apr 26, 2016</rights><rights>2016 Biophysical Society. 2016 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-ac2731d233ad78619be8bfe371b2a6d4590d8f17f3a804533d47bc9bec31a9ae3</citedby><cites>FETCH-LOGICAL-c545t-ac2731d233ad78619be8bfe371b2a6d4590d8f17f3a804533d47bc9bec31a9ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4850325/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349516300637$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27119645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blackmon, Richard L.</creatorcontrib><creatorcontrib>Sandhu, Rupninder</creatorcontrib><creatorcontrib>Chapman, Brian S.</creatorcontrib><creatorcontrib>Casbas-Hernandez, Patricia</creatorcontrib><creatorcontrib>Tracy, Joseph B.</creatorcontrib><creatorcontrib>Troester, Melissa A.</creatorcontrib><creatorcontrib>Oldenburg, Amy L.</creatorcontrib><title>Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The mammary gland extracellular matrix (ECM) is comprised of biopolymers, primarily collagen I, that are created and maintained by stromal fibroblasts. ECM remodeling by fibroblasts results in changes in ECM fiber spacing (pores) that have been shown to play a critical role in the aggressiveness of breast cancer. However, minimally invasive methods to measure the spatial distribution of ECM pore areas within tissues and in vitro 3D culture models are currently lacking. We introduce diffusion-sensitive optical coherence tomography (DS-OCT) to image the nanoscale porosity of ECM by sensing weakly constrained diffusion of gold nanorods (GNRs). DS-OCT combines the principles of low-coherence interferometry and heterodyne dynamic light scattering. By collecting co- and cross-polarized light backscattered from GNRs within tissue culture, the ensemble-averaged translational self-diffusion rate, DT, of GNRs is resolved within ∼3 coherence volumes (10 × 5 μm, x × z). As GNRs are slowed by intermittent collisions with ECM fibers, DT is sensitive to ECM porosity on the size scale of their hydrodynamic diameter (∼46 nm). Here, we validate the utility of DS-OCT using pure collagen I gels and 3D mammary fibroblast cultures seeded in collagen/Matrigel, and associate differences in artificial ECM pore areas with gel concentration and cell seed density. Across all samples, DT was highly correlated with pore area obtained by scanning electron microscopy (R2 = 0.968). We also demonstrate that DS-OCT can accurately map the spatial heterogeneity of layered samples. Importantly, DS-OCT of 3D mammary fibroblast cultures revealed the impact of fibroblast remodeling, where the spatial heterogeneity of matrix porosity was found to increase with cell density. This provides an unprecedented view into nanoscale changes in artificial ECM porosity over effective pore diameters ranging from ∼43 to 360 nm using a micron-scale optical imaging technique. In combination with the topical deposition of GNRs, the minimally invasive nature of DS-OCT makes this a promising technology for studying tissue remodeling processes.</description><subject>Animals</subject><subject>Biophysics</subject><subject>Biopolymers</subject><subject>Biotechnology</subject><subject>Cell Biophysics</subject><subject>Collagen</subject><subject>Collagen Type I - metabolism</subject><subject>Diffusion</subject><subject>Extracellular Matrix - metabolism</subject><subject>Fibroblasts - cytology</subject><subject>Gold - chemistry</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional</subject><subject>Interferometry</subject><subject>Nanotubes - chemistry</subject><subject>Porosity</subject><subject>Rats</subject><subject>Scanning electron microscopy</subject><subject>Tomography</subject><subject>Tomography, Optical Coherence - methods</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kdGK1DAYhYO4uOPqA3gjBW-8aU2apE0RBBnX3YGVBV29DWn6dyalTbpJO-y8jc_ik5ky67J6YW4S-L__kHMOQq8Izggmxbsuq8cuy-MzwzTDhD1BK8JZnmIsiqdohTEuUsoqfoqeh9BhTHKOyTN0mpeEVAXjKwSbQW2N3Sbnd5NXGvp-7pVPvqjJm7vkKwyugX6Zb-yvnz_M5F1SH5JPpm3nYJxNv4ENZjJ7SK7HyWjVJ2u3Aw9WQ3LjBrf1atwdXqCTVvUBXt7fZ-j75_Ob9WV6dX2xWX-8SjVnfEqVzktKmpxS1ZSiIFUNom6BlqTOVdEwXuFGtKRsqRKYcUobVtY6UpoSVSmgZ-jDUXec6wEaDTaa6uXozaD8QTpl5N8Ta3Zy6_aSCY5pzqPA23sB725nCJMcTFhSURbcHCQpBS_ZciL65h-0c7O30d5CCV4IXC4UOVLauxA8tA-fIVguJcpOxhLlUqLEVMYS487rxy4eNv60FoH3RwBilnsDXgZtlsgb40FPsnHmP_K_AT-ur5Q</recordid><startdate>20160426</startdate><enddate>20160426</enddate><creator>Blackmon, Richard L.</creator><creator>Sandhu, Rupninder</creator><creator>Chapman, Brian S.</creator><creator>Casbas-Hernandez, Patricia</creator><creator>Tracy, Joseph B.</creator><creator>Troester, Melissa A.</creator><creator>Oldenburg, Amy L.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160426</creationdate><title>Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography</title><author>Blackmon, Richard L. ; Sandhu, Rupninder ; Chapman, Brian S. ; Casbas-Hernandez, Patricia ; Tracy, Joseph B. ; Troester, Melissa A. ; Oldenburg, Amy L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-ac2731d233ad78619be8bfe371b2a6d4590d8f17f3a804533d47bc9bec31a9ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biophysics</topic><topic>Biopolymers</topic><topic>Biotechnology</topic><topic>Cell Biophysics</topic><topic>Collagen</topic><topic>Collagen Type I - metabolism</topic><topic>Diffusion</topic><topic>Extracellular Matrix - metabolism</topic><topic>Fibroblasts - cytology</topic><topic>Gold - chemistry</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional</topic><topic>Interferometry</topic><topic>Nanotubes - chemistry</topic><topic>Porosity</topic><topic>Rats</topic><topic>Scanning electron microscopy</topic><topic>Tomography</topic><topic>Tomography, Optical Coherence - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blackmon, Richard L.</creatorcontrib><creatorcontrib>Sandhu, Rupninder</creatorcontrib><creatorcontrib>Chapman, Brian S.</creatorcontrib><creatorcontrib>Casbas-Hernandez, Patricia</creatorcontrib><creatorcontrib>Tracy, Joseph B.</creatorcontrib><creatorcontrib>Troester, Melissa A.</creatorcontrib><creatorcontrib>Oldenburg, Amy L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blackmon, Richard L.</au><au>Sandhu, Rupninder</au><au>Chapman, Brian S.</au><au>Casbas-Hernandez, Patricia</au><au>Tracy, Joseph B.</au><au>Troester, Melissa A.</au><au>Oldenburg, Amy L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2016-04-26</date><risdate>2016</risdate><volume>110</volume><issue>8</issue><spage>1858</spage><epage>1868</epage><pages>1858-1868</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The mammary gland extracellular matrix (ECM) is comprised of biopolymers, primarily collagen I, that are created and maintained by stromal fibroblasts. ECM remodeling by fibroblasts results in changes in ECM fiber spacing (pores) that have been shown to play a critical role in the aggressiveness of breast cancer. However, minimally invasive methods to measure the spatial distribution of ECM pore areas within tissues and in vitro 3D culture models are currently lacking. We introduce diffusion-sensitive optical coherence tomography (DS-OCT) to image the nanoscale porosity of ECM by sensing weakly constrained diffusion of gold nanorods (GNRs). DS-OCT combines the principles of low-coherence interferometry and heterodyne dynamic light scattering. By collecting co- and cross-polarized light backscattered from GNRs within tissue culture, the ensemble-averaged translational self-diffusion rate, DT, of GNRs is resolved within ∼3 coherence volumes (10 × 5 μm, x × z). As GNRs are slowed by intermittent collisions with ECM fibers, DT is sensitive to ECM porosity on the size scale of their hydrodynamic diameter (∼46 nm). Here, we validate the utility of DS-OCT using pure collagen I gels and 3D mammary fibroblast cultures seeded in collagen/Matrigel, and associate differences in artificial ECM pore areas with gel concentration and cell seed density. Across all samples, DT was highly correlated with pore area obtained by scanning electron microscopy (R2 = 0.968). We also demonstrate that DS-OCT can accurately map the spatial heterogeneity of layered samples. Importantly, DS-OCT of 3D mammary fibroblast cultures revealed the impact of fibroblast remodeling, where the spatial heterogeneity of matrix porosity was found to increase with cell density. This provides an unprecedented view into nanoscale changes in artificial ECM porosity over effective pore diameters ranging from ∼43 to 360 nm using a micron-scale optical imaging technique. In combination with the topical deposition of GNRs, the minimally invasive nature of DS-OCT makes this a promising technology for studying tissue remodeling processes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27119645</pmid><doi>10.1016/j.bpj.2016.03.014</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2016-04, Vol.110 (8), p.1858-1868
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4850325
source MEDLINE; ScienceDirect Journals (5 years ago - present); Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Biophysics
Biopolymers
Biotechnology
Cell Biophysics
Collagen
Collagen Type I - metabolism
Diffusion
Extracellular Matrix - metabolism
Fibroblasts - cytology
Gold - chemistry
Humans
Imaging, Three-Dimensional
Interferometry
Nanotubes - chemistry
Porosity
Rats
Scanning electron microscopy
Tomography
Tomography, Optical Coherence - methods
title Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20Extracellular%20Matrix%20Remodeling%20In%C2%A0Vitro%20by%20Diffusion-Sensitive%20Optical%20Coherence%20Tomography&rft.jtitle=Biophysical%20journal&rft.au=Blackmon,%20Richard%20L.&rft.date=2016-04-26&rft.volume=110&rft.issue=8&rft.spage=1858&rft.epage=1868&rft.pages=1858-1868&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2016.03.014&rft_dat=%3Cproquest_pubme%3E1785744444%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1788568074&rft_id=info:pmid/27119645&rft_els_id=S0006349516300637&rfr_iscdi=true