Ryk controls remapping of motor cortex during functional recovery after spinal cord injury

Mechanisms underlying partial functional recovery after spinal cord injury are unclear. Conditionally knocking out the reinduced repulsive axon guidance receptor Ryk led to increased corticospinal axon plasticity and functional recovery. Motor cortex reorganized such that the hindlimb cortex control...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2016-05, Vol.19 (5), p.697-705
Hauptverfasser: Hollis, Edmund R, Ishiko, Nao, Yu, Ting, Lu, Chin-Chun, Haimovich, Ariela, Tolentino, Kristine, Richman, Alisha, Tury, Anna, Wang, Shih-Hsiu, Pessian, Maysam, Jo, Euna, Kolodkin, Alex, Zou, Yimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 705
container_issue 5
container_start_page 697
container_title Nature neuroscience
container_volume 19
creator Hollis, Edmund R
Ishiko, Nao
Yu, Ting
Lu, Chin-Chun
Haimovich, Ariela
Tolentino, Kristine
Richman, Alisha
Tury, Anna
Wang, Shih-Hsiu
Pessian, Maysam
Jo, Euna
Kolodkin, Alex
Zou, Yimin
description Mechanisms underlying partial functional recovery after spinal cord injury are unclear. Conditionally knocking out the reinduced repulsive axon guidance receptor Ryk led to increased corticospinal axon plasticity and functional recovery. Motor cortex reorganized such that the hindlimb cortex controls the forelimb with continued forelimb reaching task training. A greater cortical area was recruited to control the forelimb in Ryk cKO. Limited functional recovery can be achieved through rehabilitation after incomplete spinal cord injury. Eliminating the function of a repulsive Wnt receptor, Ryk, in mice and rats by either conditional knockout in the motor cortex or monoclonal antibody infusion resulted in increased corticospinal axon collateral branches with presynaptic puncta in the spinal cord and enhanced recovery of forelimb reaching and grasping function following a cervical dorsal column lesion. Using optical stimulation, we observed that motor cortical output maps underwent massive changes after injury and that hindlimb cortical areas were recruited to control the forelimb over time. Furthermore, a greater cortical area was dedicated to controlling the forelimb in Ryk conditional knockout mice than in controls (wild-type or heterozygotes). In the absence of weekly task-specific training, recruitment of ectopic cortical areas was greatly reduced and there was no significant functional recovery even in Ryk conditional knockout mice. Our study provides evidence that maximal circuit reorganization and functional recovery can be achieved by combining molecular manipulation and targeted rehabilitation.
doi_str_mv 10.1038/nn.4282
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4847956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A453722182</galeid><sourcerecordid>A453722182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c630t-ef4b8f2a1ac985ebaf40fec5da95b89c41849765111dba36e38777f70965c2663</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqUg_gGKxAE4ZPG3nQtSVfFRqRJSgQsXy3HGi5fEXuyk6v57HFrabsUB-WBr5plXM6-nqp5jtMKIqrchrBhR5EF1iDkTDZZEPCxv1MpGEC4Oqic5bxBCkqv2cXVAJBKcCnZYfT_f_axtDFOKQ64TjGa79WFdR1ePcYqp5NIEl3U_pyXs5mAnH4MZCmvjBaRdbdwEqc6lrEQL3tc-bOa0e1o9cmbI8Oz6Pqq-fXj_9eRTc_b54-nJ8VljBUVTA451yhGDjW0Vh844hhxY3puWd6q1DCvWSsExxn1nqACqpJROolZwS4SgR9W7K93t3I3QWyjDmEFvkx9N2ulovN7PBP9Dr-OFZorJli8Cr68FUvw1Q5706LOFYTAB4pw1lkqW1gih_4NygjnFuKAv76GbOKfi0R-KUS6wErfU2gygfXCxtGgXUX3MOJWEYEUKtfoHVU4Poy-_B86X-F7Bm72C5YfhclqbOWd9-uV8n311xdoUc07gbqzDSC_bpUPQy3YV8sVdp2-4v-t0a0_eLusC6c7M97R-A6p41lM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1784356186</pqid></control><display><type>article</type><title>Ryk controls remapping of motor cortex during functional recovery after spinal cord injury</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Hollis, Edmund R ; Ishiko, Nao ; Yu, Ting ; Lu, Chin-Chun ; Haimovich, Ariela ; Tolentino, Kristine ; Richman, Alisha ; Tury, Anna ; Wang, Shih-Hsiu ; Pessian, Maysam ; Jo, Euna ; Kolodkin, Alex ; Zou, Yimin</creator><creatorcontrib>Hollis, Edmund R ; Ishiko, Nao ; Yu, Ting ; Lu, Chin-Chun ; Haimovich, Ariela ; Tolentino, Kristine ; Richman, Alisha ; Tury, Anna ; Wang, Shih-Hsiu ; Pessian, Maysam ; Jo, Euna ; Kolodkin, Alex ; Zou, Yimin</creatorcontrib><description>Mechanisms underlying partial functional recovery after spinal cord injury are unclear. Conditionally knocking out the reinduced repulsive axon guidance receptor Ryk led to increased corticospinal axon plasticity and functional recovery. Motor cortex reorganized such that the hindlimb cortex controls the forelimb with continued forelimb reaching task training. A greater cortical area was recruited to control the forelimb in Ryk cKO. Limited functional recovery can be achieved through rehabilitation after incomplete spinal cord injury. Eliminating the function of a repulsive Wnt receptor, Ryk, in mice and rats by either conditional knockout in the motor cortex or monoclonal antibody infusion resulted in increased corticospinal axon collateral branches with presynaptic puncta in the spinal cord and enhanced recovery of forelimb reaching and grasping function following a cervical dorsal column lesion. Using optical stimulation, we observed that motor cortical output maps underwent massive changes after injury and that hindlimb cortical areas were recruited to control the forelimb over time. Furthermore, a greater cortical area was dedicated to controlling the forelimb in Ryk conditional knockout mice than in controls (wild-type or heterozygotes). In the absence of weekly task-specific training, recruitment of ectopic cortical areas was greatly reduced and there was no significant functional recovery even in Ryk conditional knockout mice. Our study provides evidence that maximal circuit reorganization and functional recovery can be achieved by combining molecular manipulation and targeted rehabilitation.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.4282</identifier><identifier>PMID: 27065364</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>42/41 ; 45 ; 631/378/1687/1825 ; 631/378/2632/1663 ; 64 ; 64/60 ; 82 ; 82/1 ; Animal Genetics and Genomics ; Animals ; Antibodies, Monoclonal - pharmacology ; Behavioral Sciences ; Biological Techniques ; Biomedicine ; Brain Mapping ; Cell receptors ; Cellular signal transduction ; Exercise Therapy ; Female ; Forelimb - physiology ; Genetic aspects ; Mice ; Mice, Knockout ; Mice, Transgenic ; Monoclonal antibodies ; Motor cortex ; Motor Cortex - physiology ; Neurobiology ; Neuronal Plasticity - physiology ; Neurosciences ; Properties ; Pyramidal Tracts - cytology ; Pyramidal Tracts - drug effects ; Rats ; Receptor Protein-Tyrosine Kinases - antagonists &amp; inhibitors ; Receptor Protein-Tyrosine Kinases - genetics ; Receptor Protein-Tyrosine Kinases - physiology ; Recovery of Function - physiology ; Spinal cord injuries ; Spinal Cord Injuries - physiopathology ; Spinal Cord Injuries - therapy</subject><ispartof>Nature neuroscience, 2016-05, Vol.19 (5), p.697-705</ispartof><rights>Springer Nature America, Inc. 2016</rights><rights>COPYRIGHT 2016 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c630t-ef4b8f2a1ac985ebaf40fec5da95b89c41849765111dba36e38777f70965c2663</citedby><cites>FETCH-LOGICAL-c630t-ef4b8f2a1ac985ebaf40fec5da95b89c41849765111dba36e38777f70965c2663</cites><orcidid>0000-0002-1092-5547 ; 0000-0002-4535-4668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.4282$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.4282$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27065364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hollis, Edmund R</creatorcontrib><creatorcontrib>Ishiko, Nao</creatorcontrib><creatorcontrib>Yu, Ting</creatorcontrib><creatorcontrib>Lu, Chin-Chun</creatorcontrib><creatorcontrib>Haimovich, Ariela</creatorcontrib><creatorcontrib>Tolentino, Kristine</creatorcontrib><creatorcontrib>Richman, Alisha</creatorcontrib><creatorcontrib>Tury, Anna</creatorcontrib><creatorcontrib>Wang, Shih-Hsiu</creatorcontrib><creatorcontrib>Pessian, Maysam</creatorcontrib><creatorcontrib>Jo, Euna</creatorcontrib><creatorcontrib>Kolodkin, Alex</creatorcontrib><creatorcontrib>Zou, Yimin</creatorcontrib><title>Ryk controls remapping of motor cortex during functional recovery after spinal cord injury</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Mechanisms underlying partial functional recovery after spinal cord injury are unclear. Conditionally knocking out the reinduced repulsive axon guidance receptor Ryk led to increased corticospinal axon plasticity and functional recovery. Motor cortex reorganized such that the hindlimb cortex controls the forelimb with continued forelimb reaching task training. A greater cortical area was recruited to control the forelimb in Ryk cKO. Limited functional recovery can be achieved through rehabilitation after incomplete spinal cord injury. Eliminating the function of a repulsive Wnt receptor, Ryk, in mice and rats by either conditional knockout in the motor cortex or monoclonal antibody infusion resulted in increased corticospinal axon collateral branches with presynaptic puncta in the spinal cord and enhanced recovery of forelimb reaching and grasping function following a cervical dorsal column lesion. Using optical stimulation, we observed that motor cortical output maps underwent massive changes after injury and that hindlimb cortical areas were recruited to control the forelimb over time. Furthermore, a greater cortical area was dedicated to controlling the forelimb in Ryk conditional knockout mice than in controls (wild-type or heterozygotes). In the absence of weekly task-specific training, recruitment of ectopic cortical areas was greatly reduced and there was no significant functional recovery even in Ryk conditional knockout mice. Our study provides evidence that maximal circuit reorganization and functional recovery can be achieved by combining molecular manipulation and targeted rehabilitation.</description><subject>42/41</subject><subject>45</subject><subject>631/378/1687/1825</subject><subject>631/378/2632/1663</subject><subject>64</subject><subject>64/60</subject><subject>82</subject><subject>82/1</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Antibodies, Monoclonal - pharmacology</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedicine</subject><subject>Brain Mapping</subject><subject>Cell receptors</subject><subject>Cellular signal transduction</subject><subject>Exercise Therapy</subject><subject>Female</subject><subject>Forelimb - physiology</subject><subject>Genetic aspects</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Monoclonal antibodies</subject><subject>Motor cortex</subject><subject>Motor Cortex - physiology</subject><subject>Neurobiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurosciences</subject><subject>Properties</subject><subject>Pyramidal Tracts - cytology</subject><subject>Pyramidal Tracts - drug effects</subject><subject>Rats</subject><subject>Receptor Protein-Tyrosine Kinases - antagonists &amp; inhibitors</subject><subject>Receptor Protein-Tyrosine Kinases - genetics</subject><subject>Receptor Protein-Tyrosine Kinases - physiology</subject><subject>Recovery of Function - physiology</subject><subject>Spinal cord injuries</subject><subject>Spinal Cord Injuries - physiopathology</subject><subject>Spinal Cord Injuries - therapy</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkk1v1DAQhiMEoqUg_gGKxAE4ZPG3nQtSVfFRqRJSgQsXy3HGi5fEXuyk6v57HFrabsUB-WBr5plXM6-nqp5jtMKIqrchrBhR5EF1iDkTDZZEPCxv1MpGEC4Oqic5bxBCkqv2cXVAJBKcCnZYfT_f_axtDFOKQ64TjGa79WFdR1ePcYqp5NIEl3U_pyXs5mAnH4MZCmvjBaRdbdwEqc6lrEQL3tc-bOa0e1o9cmbI8Oz6Pqq-fXj_9eRTc_b54-nJ8VljBUVTA451yhGDjW0Vh844hhxY3puWd6q1DCvWSsExxn1nqACqpJROolZwS4SgR9W7K93t3I3QWyjDmEFvkx9N2ulovN7PBP9Dr-OFZorJli8Cr68FUvw1Q5706LOFYTAB4pw1lkqW1gih_4NygjnFuKAv76GbOKfi0R-KUS6wErfU2gygfXCxtGgXUX3MOJWEYEUKtfoHVU4Poy-_B86X-F7Bm72C5YfhclqbOWd9-uV8n311xdoUc07gbqzDSC_bpUPQy3YV8sVdp2-4v-t0a0_eLusC6c7M97R-A6p41lM</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Hollis, Edmund R</creator><creator>Ishiko, Nao</creator><creator>Yu, Ting</creator><creator>Lu, Chin-Chun</creator><creator>Haimovich, Ariela</creator><creator>Tolentino, Kristine</creator><creator>Richman, Alisha</creator><creator>Tury, Anna</creator><creator>Wang, Shih-Hsiu</creator><creator>Pessian, Maysam</creator><creator>Jo, Euna</creator><creator>Kolodkin, Alex</creator><creator>Zou, Yimin</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1092-5547</orcidid><orcidid>https://orcid.org/0000-0002-4535-4668</orcidid></search><sort><creationdate>20160501</creationdate><title>Ryk controls remapping of motor cortex during functional recovery after spinal cord injury</title><author>Hollis, Edmund R ; Ishiko, Nao ; Yu, Ting ; Lu, Chin-Chun ; Haimovich, Ariela ; Tolentino, Kristine ; Richman, Alisha ; Tury, Anna ; Wang, Shih-Hsiu ; Pessian, Maysam ; Jo, Euna ; Kolodkin, Alex ; Zou, Yimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c630t-ef4b8f2a1ac985ebaf40fec5da95b89c41849765111dba36e38777f70965c2663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>42/41</topic><topic>45</topic><topic>631/378/1687/1825</topic><topic>631/378/2632/1663</topic><topic>64</topic><topic>64/60</topic><topic>82</topic><topic>82/1</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Antibodies, Monoclonal - pharmacology</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedicine</topic><topic>Brain Mapping</topic><topic>Cell receptors</topic><topic>Cellular signal transduction</topic><topic>Exercise Therapy</topic><topic>Female</topic><topic>Forelimb - physiology</topic><topic>Genetic aspects</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Monoclonal antibodies</topic><topic>Motor cortex</topic><topic>Motor Cortex - physiology</topic><topic>Neurobiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurosciences</topic><topic>Properties</topic><topic>Pyramidal Tracts - cytology</topic><topic>Pyramidal Tracts - drug effects</topic><topic>Rats</topic><topic>Receptor Protein-Tyrosine Kinases - antagonists &amp; inhibitors</topic><topic>Receptor Protein-Tyrosine Kinases - genetics</topic><topic>Receptor Protein-Tyrosine Kinases - physiology</topic><topic>Recovery of Function - physiology</topic><topic>Spinal cord injuries</topic><topic>Spinal Cord Injuries - physiopathology</topic><topic>Spinal Cord Injuries - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hollis, Edmund R</creatorcontrib><creatorcontrib>Ishiko, Nao</creatorcontrib><creatorcontrib>Yu, Ting</creatorcontrib><creatorcontrib>Lu, Chin-Chun</creatorcontrib><creatorcontrib>Haimovich, Ariela</creatorcontrib><creatorcontrib>Tolentino, Kristine</creatorcontrib><creatorcontrib>Richman, Alisha</creatorcontrib><creatorcontrib>Tury, Anna</creatorcontrib><creatorcontrib>Wang, Shih-Hsiu</creatorcontrib><creatorcontrib>Pessian, Maysam</creatorcontrib><creatorcontrib>Jo, Euna</creatorcontrib><creatorcontrib>Kolodkin, Alex</creatorcontrib><creatorcontrib>Zou, Yimin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hollis, Edmund R</au><au>Ishiko, Nao</au><au>Yu, Ting</au><au>Lu, Chin-Chun</au><au>Haimovich, Ariela</au><au>Tolentino, Kristine</au><au>Richman, Alisha</au><au>Tury, Anna</au><au>Wang, Shih-Hsiu</au><au>Pessian, Maysam</au><au>Jo, Euna</au><au>Kolodkin, Alex</au><au>Zou, Yimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ryk controls remapping of motor cortex during functional recovery after spinal cord injury</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>19</volume><issue>5</issue><spage>697</spage><epage>705</epage><pages>697-705</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>Mechanisms underlying partial functional recovery after spinal cord injury are unclear. Conditionally knocking out the reinduced repulsive axon guidance receptor Ryk led to increased corticospinal axon plasticity and functional recovery. Motor cortex reorganized such that the hindlimb cortex controls the forelimb with continued forelimb reaching task training. A greater cortical area was recruited to control the forelimb in Ryk cKO. Limited functional recovery can be achieved through rehabilitation after incomplete spinal cord injury. Eliminating the function of a repulsive Wnt receptor, Ryk, in mice and rats by either conditional knockout in the motor cortex or monoclonal antibody infusion resulted in increased corticospinal axon collateral branches with presynaptic puncta in the spinal cord and enhanced recovery of forelimb reaching and grasping function following a cervical dorsal column lesion. Using optical stimulation, we observed that motor cortical output maps underwent massive changes after injury and that hindlimb cortical areas were recruited to control the forelimb over time. Furthermore, a greater cortical area was dedicated to controlling the forelimb in Ryk conditional knockout mice than in controls (wild-type or heterozygotes). In the absence of weekly task-specific training, recruitment of ectopic cortical areas was greatly reduced and there was no significant functional recovery even in Ryk conditional knockout mice. Our study provides evidence that maximal circuit reorganization and functional recovery can be achieved by combining molecular manipulation and targeted rehabilitation.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>27065364</pmid><doi>10.1038/nn.4282</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1092-5547</orcidid><orcidid>https://orcid.org/0000-0002-4535-4668</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2016-05, Vol.19 (5), p.697-705
issn 1097-6256
1546-1726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4847956
source MEDLINE; SpringerLink Journals; Nature
subjects 42/41
45
631/378/1687/1825
631/378/2632/1663
64
64/60
82
82/1
Animal Genetics and Genomics
Animals
Antibodies, Monoclonal - pharmacology
Behavioral Sciences
Biological Techniques
Biomedicine
Brain Mapping
Cell receptors
Cellular signal transduction
Exercise Therapy
Female
Forelimb - physiology
Genetic aspects
Mice
Mice, Knockout
Mice, Transgenic
Monoclonal antibodies
Motor cortex
Motor Cortex - physiology
Neurobiology
Neuronal Plasticity - physiology
Neurosciences
Properties
Pyramidal Tracts - cytology
Pyramidal Tracts - drug effects
Rats
Receptor Protein-Tyrosine Kinases - antagonists & inhibitors
Receptor Protein-Tyrosine Kinases - genetics
Receptor Protein-Tyrosine Kinases - physiology
Recovery of Function - physiology
Spinal cord injuries
Spinal Cord Injuries - physiopathology
Spinal Cord Injuries - therapy
title Ryk controls remapping of motor cortex during functional recovery after spinal cord injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ryk%20controls%20remapping%20of%20motor%20cortex%20during%20functional%20recovery%20after%20spinal%20cord%20injury&rft.jtitle=Nature%20neuroscience&rft.au=Hollis,%20Edmund%20R&rft.date=2016-05-01&rft.volume=19&rft.issue=5&rft.spage=697&rft.epage=705&rft.pages=697-705&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn.4282&rft_dat=%3Cgale_pubme%3EA453722182%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1784356186&rft_id=info:pmid/27065364&rft_galeid=A453722182&rfr_iscdi=true