Ryk controls remapping of motor cortex during functional recovery after spinal cord injury
Mechanisms underlying partial functional recovery after spinal cord injury are unclear. Conditionally knocking out the reinduced repulsive axon guidance receptor Ryk led to increased corticospinal axon plasticity and functional recovery. Motor cortex reorganized such that the hindlimb cortex control...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2016-05, Vol.19 (5), p.697-705 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 705 |
---|---|
container_issue | 5 |
container_start_page | 697 |
container_title | Nature neuroscience |
container_volume | 19 |
creator | Hollis, Edmund R Ishiko, Nao Yu, Ting Lu, Chin-Chun Haimovich, Ariela Tolentino, Kristine Richman, Alisha Tury, Anna Wang, Shih-Hsiu Pessian, Maysam Jo, Euna Kolodkin, Alex Zou, Yimin |
description | Mechanisms underlying partial functional recovery after spinal cord injury are unclear. Conditionally knocking out the reinduced repulsive axon guidance receptor Ryk led to increased corticospinal axon plasticity and functional recovery. Motor cortex reorganized such that the hindlimb cortex controls the forelimb with continued forelimb reaching task training. A greater cortical area was recruited to control the forelimb in
Ryk
cKO.
Limited functional recovery can be achieved through rehabilitation after incomplete spinal cord injury. Eliminating the function of a repulsive Wnt receptor, Ryk, in mice and rats by either conditional knockout in the motor cortex or monoclonal antibody infusion resulted in increased corticospinal axon collateral branches with presynaptic puncta in the spinal cord and enhanced recovery of forelimb reaching and grasping function following a cervical dorsal column lesion. Using optical stimulation, we observed that motor cortical output maps underwent massive changes after injury and that hindlimb cortical areas were recruited to control the forelimb over time. Furthermore, a greater cortical area was dedicated to controlling the forelimb in
Ryk
conditional knockout mice than in controls (wild-type or heterozygotes). In the absence of weekly task-specific training, recruitment of ectopic cortical areas was greatly reduced and there was no significant functional recovery even in
Ryk
conditional knockout mice. Our study provides evidence that maximal circuit reorganization and functional recovery can be achieved by combining molecular manipulation and targeted rehabilitation. |
doi_str_mv | 10.1038/nn.4282 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4847956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A453722182</galeid><sourcerecordid>A453722182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c630t-ef4b8f2a1ac985ebaf40fec5da95b89c41849765111dba36e38777f70965c2663</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqUg_gGKxAE4ZPG3nQtSVfFRqRJSgQsXy3HGi5fEXuyk6v57HFrabsUB-WBr5plXM6-nqp5jtMKIqrchrBhR5EF1iDkTDZZEPCxv1MpGEC4Oqic5bxBCkqv2cXVAJBKcCnZYfT_f_axtDFOKQ64TjGa79WFdR1ePcYqp5NIEl3U_pyXs5mAnH4MZCmvjBaRdbdwEqc6lrEQL3tc-bOa0e1o9cmbI8Oz6Pqq-fXj_9eRTc_b54-nJ8VljBUVTA451yhGDjW0Vh844hhxY3puWd6q1DCvWSsExxn1nqACqpJROolZwS4SgR9W7K93t3I3QWyjDmEFvkx9N2ulovN7PBP9Dr-OFZorJli8Cr68FUvw1Q5706LOFYTAB4pw1lkqW1gih_4NygjnFuKAv76GbOKfi0R-KUS6wErfU2gygfXCxtGgXUX3MOJWEYEUKtfoHVU4Poy-_B86X-F7Bm72C5YfhclqbOWd9-uV8n311xdoUc07gbqzDSC_bpUPQy3YV8sVdp2-4v-t0a0_eLusC6c7M97R-A6p41lM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1784356186</pqid></control><display><type>article</type><title>Ryk controls remapping of motor cortex during functional recovery after spinal cord injury</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Hollis, Edmund R ; Ishiko, Nao ; Yu, Ting ; Lu, Chin-Chun ; Haimovich, Ariela ; Tolentino, Kristine ; Richman, Alisha ; Tury, Anna ; Wang, Shih-Hsiu ; Pessian, Maysam ; Jo, Euna ; Kolodkin, Alex ; Zou, Yimin</creator><creatorcontrib>Hollis, Edmund R ; Ishiko, Nao ; Yu, Ting ; Lu, Chin-Chun ; Haimovich, Ariela ; Tolentino, Kristine ; Richman, Alisha ; Tury, Anna ; Wang, Shih-Hsiu ; Pessian, Maysam ; Jo, Euna ; Kolodkin, Alex ; Zou, Yimin</creatorcontrib><description>Mechanisms underlying partial functional recovery after spinal cord injury are unclear. Conditionally knocking out the reinduced repulsive axon guidance receptor Ryk led to increased corticospinal axon plasticity and functional recovery. Motor cortex reorganized such that the hindlimb cortex controls the forelimb with continued forelimb reaching task training. A greater cortical area was recruited to control the forelimb in
Ryk
cKO.
Limited functional recovery can be achieved through rehabilitation after incomplete spinal cord injury. Eliminating the function of a repulsive Wnt receptor, Ryk, in mice and rats by either conditional knockout in the motor cortex or monoclonal antibody infusion resulted in increased corticospinal axon collateral branches with presynaptic puncta in the spinal cord and enhanced recovery of forelimb reaching and grasping function following a cervical dorsal column lesion. Using optical stimulation, we observed that motor cortical output maps underwent massive changes after injury and that hindlimb cortical areas were recruited to control the forelimb over time. Furthermore, a greater cortical area was dedicated to controlling the forelimb in
Ryk
conditional knockout mice than in controls (wild-type or heterozygotes). In the absence of weekly task-specific training, recruitment of ectopic cortical areas was greatly reduced and there was no significant functional recovery even in
Ryk
conditional knockout mice. Our study provides evidence that maximal circuit reorganization and functional recovery can be achieved by combining molecular manipulation and targeted rehabilitation.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.4282</identifier><identifier>PMID: 27065364</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>42/41 ; 45 ; 631/378/1687/1825 ; 631/378/2632/1663 ; 64 ; 64/60 ; 82 ; 82/1 ; Animal Genetics and Genomics ; Animals ; Antibodies, Monoclonal - pharmacology ; Behavioral Sciences ; Biological Techniques ; Biomedicine ; Brain Mapping ; Cell receptors ; Cellular signal transduction ; Exercise Therapy ; Female ; Forelimb - physiology ; Genetic aspects ; Mice ; Mice, Knockout ; Mice, Transgenic ; Monoclonal antibodies ; Motor cortex ; Motor Cortex - physiology ; Neurobiology ; Neuronal Plasticity - physiology ; Neurosciences ; Properties ; Pyramidal Tracts - cytology ; Pyramidal Tracts - drug effects ; Rats ; Receptor Protein-Tyrosine Kinases - antagonists & inhibitors ; Receptor Protein-Tyrosine Kinases - genetics ; Receptor Protein-Tyrosine Kinases - physiology ; Recovery of Function - physiology ; Spinal cord injuries ; Spinal Cord Injuries - physiopathology ; Spinal Cord Injuries - therapy</subject><ispartof>Nature neuroscience, 2016-05, Vol.19 (5), p.697-705</ispartof><rights>Springer Nature America, Inc. 2016</rights><rights>COPYRIGHT 2016 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c630t-ef4b8f2a1ac985ebaf40fec5da95b89c41849765111dba36e38777f70965c2663</citedby><cites>FETCH-LOGICAL-c630t-ef4b8f2a1ac985ebaf40fec5da95b89c41849765111dba36e38777f70965c2663</cites><orcidid>0000-0002-1092-5547 ; 0000-0002-4535-4668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.4282$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.4282$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27065364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hollis, Edmund R</creatorcontrib><creatorcontrib>Ishiko, Nao</creatorcontrib><creatorcontrib>Yu, Ting</creatorcontrib><creatorcontrib>Lu, Chin-Chun</creatorcontrib><creatorcontrib>Haimovich, Ariela</creatorcontrib><creatorcontrib>Tolentino, Kristine</creatorcontrib><creatorcontrib>Richman, Alisha</creatorcontrib><creatorcontrib>Tury, Anna</creatorcontrib><creatorcontrib>Wang, Shih-Hsiu</creatorcontrib><creatorcontrib>Pessian, Maysam</creatorcontrib><creatorcontrib>Jo, Euna</creatorcontrib><creatorcontrib>Kolodkin, Alex</creatorcontrib><creatorcontrib>Zou, Yimin</creatorcontrib><title>Ryk controls remapping of motor cortex during functional recovery after spinal cord injury</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Mechanisms underlying partial functional recovery after spinal cord injury are unclear. Conditionally knocking out the reinduced repulsive axon guidance receptor Ryk led to increased corticospinal axon plasticity and functional recovery. Motor cortex reorganized such that the hindlimb cortex controls the forelimb with continued forelimb reaching task training. A greater cortical area was recruited to control the forelimb in
Ryk
cKO.
Limited functional recovery can be achieved through rehabilitation after incomplete spinal cord injury. Eliminating the function of a repulsive Wnt receptor, Ryk, in mice and rats by either conditional knockout in the motor cortex or monoclonal antibody infusion resulted in increased corticospinal axon collateral branches with presynaptic puncta in the spinal cord and enhanced recovery of forelimb reaching and grasping function following a cervical dorsal column lesion. Using optical stimulation, we observed that motor cortical output maps underwent massive changes after injury and that hindlimb cortical areas were recruited to control the forelimb over time. Furthermore, a greater cortical area was dedicated to controlling the forelimb in
Ryk
conditional knockout mice than in controls (wild-type or heterozygotes). In the absence of weekly task-specific training, recruitment of ectopic cortical areas was greatly reduced and there was no significant functional recovery even in
Ryk
conditional knockout mice. Our study provides evidence that maximal circuit reorganization and functional recovery can be achieved by combining molecular manipulation and targeted rehabilitation.</description><subject>42/41</subject><subject>45</subject><subject>631/378/1687/1825</subject><subject>631/378/2632/1663</subject><subject>64</subject><subject>64/60</subject><subject>82</subject><subject>82/1</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Antibodies, Monoclonal - pharmacology</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedicine</subject><subject>Brain Mapping</subject><subject>Cell receptors</subject><subject>Cellular signal transduction</subject><subject>Exercise Therapy</subject><subject>Female</subject><subject>Forelimb - physiology</subject><subject>Genetic aspects</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Monoclonal antibodies</subject><subject>Motor cortex</subject><subject>Motor Cortex - physiology</subject><subject>Neurobiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurosciences</subject><subject>Properties</subject><subject>Pyramidal Tracts - cytology</subject><subject>Pyramidal Tracts - drug effects</subject><subject>Rats</subject><subject>Receptor Protein-Tyrosine Kinases - antagonists & inhibitors</subject><subject>Receptor Protein-Tyrosine Kinases - genetics</subject><subject>Receptor Protein-Tyrosine Kinases - physiology</subject><subject>Recovery of Function - physiology</subject><subject>Spinal cord injuries</subject><subject>Spinal Cord Injuries - physiopathology</subject><subject>Spinal Cord Injuries - therapy</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkk1v1DAQhiMEoqUg_gGKxAE4ZPG3nQtSVfFRqRJSgQsXy3HGi5fEXuyk6v57HFrabsUB-WBr5plXM6-nqp5jtMKIqrchrBhR5EF1iDkTDZZEPCxv1MpGEC4Oqic5bxBCkqv2cXVAJBKcCnZYfT_f_axtDFOKQ64TjGa79WFdR1ePcYqp5NIEl3U_pyXs5mAnH4MZCmvjBaRdbdwEqc6lrEQL3tc-bOa0e1o9cmbI8Oz6Pqq-fXj_9eRTc_b54-nJ8VljBUVTA451yhGDjW0Vh844hhxY3puWd6q1DCvWSsExxn1nqACqpJROolZwS4SgR9W7K93t3I3QWyjDmEFvkx9N2ulovN7PBP9Dr-OFZorJli8Cr68FUvw1Q5706LOFYTAB4pw1lkqW1gih_4NygjnFuKAv76GbOKfi0R-KUS6wErfU2gygfXCxtGgXUX3MOJWEYEUKtfoHVU4Poy-_B86X-F7Bm72C5YfhclqbOWd9-uV8n311xdoUc07gbqzDSC_bpUPQy3YV8sVdp2-4v-t0a0_eLusC6c7M97R-A6p41lM</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Hollis, Edmund R</creator><creator>Ishiko, Nao</creator><creator>Yu, Ting</creator><creator>Lu, Chin-Chun</creator><creator>Haimovich, Ariela</creator><creator>Tolentino, Kristine</creator><creator>Richman, Alisha</creator><creator>Tury, Anna</creator><creator>Wang, Shih-Hsiu</creator><creator>Pessian, Maysam</creator><creator>Jo, Euna</creator><creator>Kolodkin, Alex</creator><creator>Zou, Yimin</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1092-5547</orcidid><orcidid>https://orcid.org/0000-0002-4535-4668</orcidid></search><sort><creationdate>20160501</creationdate><title>Ryk controls remapping of motor cortex during functional recovery after spinal cord injury</title><author>Hollis, Edmund R ; Ishiko, Nao ; Yu, Ting ; Lu, Chin-Chun ; Haimovich, Ariela ; Tolentino, Kristine ; Richman, Alisha ; Tury, Anna ; Wang, Shih-Hsiu ; Pessian, Maysam ; Jo, Euna ; Kolodkin, Alex ; Zou, Yimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c630t-ef4b8f2a1ac985ebaf40fec5da95b89c41849765111dba36e38777f70965c2663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>42/41</topic><topic>45</topic><topic>631/378/1687/1825</topic><topic>631/378/2632/1663</topic><topic>64</topic><topic>64/60</topic><topic>82</topic><topic>82/1</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Antibodies, Monoclonal - pharmacology</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedicine</topic><topic>Brain Mapping</topic><topic>Cell receptors</topic><topic>Cellular signal transduction</topic><topic>Exercise Therapy</topic><topic>Female</topic><topic>Forelimb - physiology</topic><topic>Genetic aspects</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Monoclonal antibodies</topic><topic>Motor cortex</topic><topic>Motor Cortex - physiology</topic><topic>Neurobiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurosciences</topic><topic>Properties</topic><topic>Pyramidal Tracts - cytology</topic><topic>Pyramidal Tracts - drug effects</topic><topic>Rats</topic><topic>Receptor Protein-Tyrosine Kinases - antagonists & inhibitors</topic><topic>Receptor Protein-Tyrosine Kinases - genetics</topic><topic>Receptor Protein-Tyrosine Kinases - physiology</topic><topic>Recovery of Function - physiology</topic><topic>Spinal cord injuries</topic><topic>Spinal Cord Injuries - physiopathology</topic><topic>Spinal Cord Injuries - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hollis, Edmund R</creatorcontrib><creatorcontrib>Ishiko, Nao</creatorcontrib><creatorcontrib>Yu, Ting</creatorcontrib><creatorcontrib>Lu, Chin-Chun</creatorcontrib><creatorcontrib>Haimovich, Ariela</creatorcontrib><creatorcontrib>Tolentino, Kristine</creatorcontrib><creatorcontrib>Richman, Alisha</creatorcontrib><creatorcontrib>Tury, Anna</creatorcontrib><creatorcontrib>Wang, Shih-Hsiu</creatorcontrib><creatorcontrib>Pessian, Maysam</creatorcontrib><creatorcontrib>Jo, Euna</creatorcontrib><creatorcontrib>Kolodkin, Alex</creatorcontrib><creatorcontrib>Zou, Yimin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hollis, Edmund R</au><au>Ishiko, Nao</au><au>Yu, Ting</au><au>Lu, Chin-Chun</au><au>Haimovich, Ariela</au><au>Tolentino, Kristine</au><au>Richman, Alisha</au><au>Tury, Anna</au><au>Wang, Shih-Hsiu</au><au>Pessian, Maysam</au><au>Jo, Euna</au><au>Kolodkin, Alex</au><au>Zou, Yimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ryk controls remapping of motor cortex during functional recovery after spinal cord injury</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>19</volume><issue>5</issue><spage>697</spage><epage>705</epage><pages>697-705</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>Mechanisms underlying partial functional recovery after spinal cord injury are unclear. Conditionally knocking out the reinduced repulsive axon guidance receptor Ryk led to increased corticospinal axon plasticity and functional recovery. Motor cortex reorganized such that the hindlimb cortex controls the forelimb with continued forelimb reaching task training. A greater cortical area was recruited to control the forelimb in
Ryk
cKO.
Limited functional recovery can be achieved through rehabilitation after incomplete spinal cord injury. Eliminating the function of a repulsive Wnt receptor, Ryk, in mice and rats by either conditional knockout in the motor cortex or monoclonal antibody infusion resulted in increased corticospinal axon collateral branches with presynaptic puncta in the spinal cord and enhanced recovery of forelimb reaching and grasping function following a cervical dorsal column lesion. Using optical stimulation, we observed that motor cortical output maps underwent massive changes after injury and that hindlimb cortical areas were recruited to control the forelimb over time. Furthermore, a greater cortical area was dedicated to controlling the forelimb in
Ryk
conditional knockout mice than in controls (wild-type or heterozygotes). In the absence of weekly task-specific training, recruitment of ectopic cortical areas was greatly reduced and there was no significant functional recovery even in
Ryk
conditional knockout mice. Our study provides evidence that maximal circuit reorganization and functional recovery can be achieved by combining molecular manipulation and targeted rehabilitation.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>27065364</pmid><doi>10.1038/nn.4282</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1092-5547</orcidid><orcidid>https://orcid.org/0000-0002-4535-4668</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2016-05, Vol.19 (5), p.697-705 |
issn | 1097-6256 1546-1726 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4847956 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | 42/41 45 631/378/1687/1825 631/378/2632/1663 64 64/60 82 82/1 Animal Genetics and Genomics Animals Antibodies, Monoclonal - pharmacology Behavioral Sciences Biological Techniques Biomedicine Brain Mapping Cell receptors Cellular signal transduction Exercise Therapy Female Forelimb - physiology Genetic aspects Mice Mice, Knockout Mice, Transgenic Monoclonal antibodies Motor cortex Motor Cortex - physiology Neurobiology Neuronal Plasticity - physiology Neurosciences Properties Pyramidal Tracts - cytology Pyramidal Tracts - drug effects Rats Receptor Protein-Tyrosine Kinases - antagonists & inhibitors Receptor Protein-Tyrosine Kinases - genetics Receptor Protein-Tyrosine Kinases - physiology Recovery of Function - physiology Spinal cord injuries Spinal Cord Injuries - physiopathology Spinal Cord Injuries - therapy |
title | Ryk controls remapping of motor cortex during functional recovery after spinal cord injury |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ryk%20controls%20remapping%20of%20motor%20cortex%20during%20functional%20recovery%20after%20spinal%20cord%20injury&rft.jtitle=Nature%20neuroscience&rft.au=Hollis,%20Edmund%20R&rft.date=2016-05-01&rft.volume=19&rft.issue=5&rft.spage=697&rft.epage=705&rft.pages=697-705&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn.4282&rft_dat=%3Cgale_pubme%3EA453722182%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1784356186&rft_id=info:pmid/27065364&rft_galeid=A453722182&rfr_iscdi=true |