Optical Diffraction in Close Proximity to Plane Apertures. II. Comparison of Half-Plane Diffraction Theories

The accuracy and physical significance of the classical Rayleigh-Sommerfeld and Kirchhoff diffraction integrals are assessed in the context of Sommerfeld's rigorous theory of half-plane diffraction and Maxwell's equations. It is shown that the Rayleigh-Sommerfeld integrals are in satisfact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of research of the National Institute of Standards and Technology 2003-01, Vol.108 (1), p.57-68
1. Verfasser: Mielenz, Klaus D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1
container_start_page 57
container_title Journal of research of the National Institute of Standards and Technology
container_volume 108
creator Mielenz, Klaus D
description The accuracy and physical significance of the classical Rayleigh-Sommerfeld and Kirchhoff diffraction integrals are assessed in the context of Sommerfeld's rigorous theory of half-plane diffraction and Maxwell's equations. It is shown that the Rayleigh-Sommerfeld integrals are in satisfactory agreement with Sommerfeld's theory in most of the positive near zone, except at sub-wavelength distances from the screen. On account of the bidirectional nature of diffraction by metallic screens the Rayleigh-Sommerfeld integrals themselves cannot be used for irradiance calculations, but must first be resolved into their forward and reverse components and it is found that Kirchhoff's integral is the appropriate measure of the forward irradiance. Because of the inadequate boundary conditions assumed in their derivation the Rayleigh-Sommerfeld and Kirchhoff integrals do not correctly describe the flow of energy through the aperture.
doi_str_mv 10.6028/jres.108.006
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4844525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743398266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-eea2b8f3f7727d9ab66d128a7414cb45e17ae891c21a1534e306657b5cae123c3</originalsourceid><addsrcrecordid>eNp9kktv1DAUhS0EotPCjjWyWAALMvhtZ4NUDY-OVKldFImd5XhuqEdJHOwE0X9fR1OqwqLeWJa_e-7rIPSKkrUizHzcJ8hrSsyaEPUErRhVstJMiqdoRYkQldL6xxE6znlPylGifo6OmBaUy1qsUHcxTsG7Dn8ObZucn0IccBjwposZ8GWKf0Ifphs8RXzZuQHw6QhpmpeceLtd403sR5dCLlGxxWeua6sD91Dv6hpiCpBfoGet6zK8vLtP0PevX642Z9X5xbft5vS88kKzqQJwrDEtb7Vmele7RqkdZcaVooVvhASqHZiaekYdlVwAJ0pJ3UjvgDLu-Qn6dNAd56aHnYdhSq6zYwq9Szc2umD__RnCtf0Zf1thhJBMFoF3dwIp_pohT7YP2UO3dBbnbLXgvDZMqUK-fZRkuuam0AV8_yhIDRFGylot2d_8h-7jnIYyMcuo0EbImhTowwHyKeacoL1vjxK7GMMuxigPY8vWC_764Uju4b9O4Lc2O7R8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214784590</pqid></control><display><type>article</type><title>Optical Diffraction in Close Proximity to Plane Apertures. II. Comparison of Half-Plane Diffraction Theories</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mielenz, Klaus D</creator><creatorcontrib>Mielenz, Klaus D</creatorcontrib><description>The accuracy and physical significance of the classical Rayleigh-Sommerfeld and Kirchhoff diffraction integrals are assessed in the context of Sommerfeld's rigorous theory of half-plane diffraction and Maxwell's equations. It is shown that the Rayleigh-Sommerfeld integrals are in satisfactory agreement with Sommerfeld's theory in most of the positive near zone, except at sub-wavelength distances from the screen. On account of the bidirectional nature of diffraction by metallic screens the Rayleigh-Sommerfeld integrals themselves cannot be used for irradiance calculations, but must first be resolved into their forward and reverse components and it is found that Kirchhoff's integral is the appropriate measure of the forward irradiance. Because of the inadequate boundary conditions assumed in their derivation the Rayleigh-Sommerfeld and Kirchhoff integrals do not correctly describe the flow of energy through the aperture.</description><identifier>ISSN: 1044-677X</identifier><identifier>EISSN: 2165-7254</identifier><identifier>DOI: 10.6028/jres.108.006</identifier><identifier>PMID: 27413594</identifier><identifier>CODEN: JRITEF</identifier><language>eng</language><publisher>United States: Superintendent of Documents</publisher><subject>Diffraction ; Physical properties ; Theory</subject><ispartof>Journal of research of the National Institute of Standards and Technology, 2003-01, Vol.108 (1), p.57-68</ispartof><rights>Copyright Superintendent of Documents Jan/Feb 2003</rights><rights>2003</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-eea2b8f3f7727d9ab66d128a7414cb45e17ae891c21a1534e306657b5cae123c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844525/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844525/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27413594$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mielenz, Klaus D</creatorcontrib><title>Optical Diffraction in Close Proximity to Plane Apertures. II. Comparison of Half-Plane Diffraction Theories</title><title>Journal of research of the National Institute of Standards and Technology</title><addtitle>J Res Natl Inst Stand Technol</addtitle><description>The accuracy and physical significance of the classical Rayleigh-Sommerfeld and Kirchhoff diffraction integrals are assessed in the context of Sommerfeld's rigorous theory of half-plane diffraction and Maxwell's equations. It is shown that the Rayleigh-Sommerfeld integrals are in satisfactory agreement with Sommerfeld's theory in most of the positive near zone, except at sub-wavelength distances from the screen. On account of the bidirectional nature of diffraction by metallic screens the Rayleigh-Sommerfeld integrals themselves cannot be used for irradiance calculations, but must first be resolved into their forward and reverse components and it is found that Kirchhoff's integral is the appropriate measure of the forward irradiance. Because of the inadequate boundary conditions assumed in their derivation the Rayleigh-Sommerfeld and Kirchhoff integrals do not correctly describe the flow of energy through the aperture.</description><subject>Diffraction</subject><subject>Physical properties</subject><subject>Theory</subject><issn>1044-677X</issn><issn>2165-7254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kktv1DAUhS0EotPCjjWyWAALMvhtZ4NUDY-OVKldFImd5XhuqEdJHOwE0X9fR1OqwqLeWJa_e-7rIPSKkrUizHzcJ8hrSsyaEPUErRhVstJMiqdoRYkQldL6xxE6znlPylGifo6OmBaUy1qsUHcxTsG7Dn8ObZucn0IccBjwposZ8GWKf0Ifphs8RXzZuQHw6QhpmpeceLtd403sR5dCLlGxxWeua6sD91Dv6hpiCpBfoGet6zK8vLtP0PevX642Z9X5xbft5vS88kKzqQJwrDEtb7Vmele7RqkdZcaVooVvhASqHZiaekYdlVwAJ0pJ3UjvgDLu-Qn6dNAd56aHnYdhSq6zYwq9Szc2umD__RnCtf0Zf1thhJBMFoF3dwIp_pohT7YP2UO3dBbnbLXgvDZMqUK-fZRkuuam0AV8_yhIDRFGylot2d_8h-7jnIYyMcuo0EbImhTowwHyKeacoL1vjxK7GMMuxigPY8vWC_764Uju4b9O4Lc2O7R8</recordid><startdate>200301</startdate><enddate>200301</enddate><creator>Mielenz, Klaus D</creator><general>Superintendent of Documents</general><general>[Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4S-</scope><scope>4T-</scope><scope>4U-</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>FR3</scope><scope>JG9</scope><scope>5PM</scope></search><sort><creationdate>200301</creationdate><title>Optical Diffraction in Close Proximity to Plane Apertures. II. Comparison of Half-Plane Diffraction Theories</title><author>Mielenz, Klaus D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-eea2b8f3f7727d9ab66d128a7414cb45e17ae891c21a1534e306657b5cae123c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Diffraction</topic><topic>Physical properties</topic><topic>Theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Mielenz, Klaus D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>BPIR.com Limited</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of research of the National Institute of Standards and Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mielenz, Klaus D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Diffraction in Close Proximity to Plane Apertures. II. Comparison of Half-Plane Diffraction Theories</atitle><jtitle>Journal of research of the National Institute of Standards and Technology</jtitle><addtitle>J Res Natl Inst Stand Technol</addtitle><date>2003-01</date><risdate>2003</risdate><volume>108</volume><issue>1</issue><spage>57</spage><epage>68</epage><pages>57-68</pages><issn>1044-677X</issn><eissn>2165-7254</eissn><coden>JRITEF</coden><abstract>The accuracy and physical significance of the classical Rayleigh-Sommerfeld and Kirchhoff diffraction integrals are assessed in the context of Sommerfeld's rigorous theory of half-plane diffraction and Maxwell's equations. It is shown that the Rayleigh-Sommerfeld integrals are in satisfactory agreement with Sommerfeld's theory in most of the positive near zone, except at sub-wavelength distances from the screen. On account of the bidirectional nature of diffraction by metallic screens the Rayleigh-Sommerfeld integrals themselves cannot be used for irradiance calculations, but must first be resolved into their forward and reverse components and it is found that Kirchhoff's integral is the appropriate measure of the forward irradiance. Because of the inadequate boundary conditions assumed in their derivation the Rayleigh-Sommerfeld and Kirchhoff integrals do not correctly describe the flow of energy through the aperture.</abstract><cop>United States</cop><pub>Superintendent of Documents</pub><pmid>27413594</pmid><doi>10.6028/jres.108.006</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1044-677X
ispartof Journal of research of the National Institute of Standards and Technology, 2003-01, Vol.108 (1), p.57-68
issn 1044-677X
2165-7254
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4844525
source PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Diffraction
Physical properties
Theory
title Optical Diffraction in Close Proximity to Plane Apertures. II. Comparison of Half-Plane Diffraction Theories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T16%3A37%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Diffraction%20in%20Close%20Proximity%20to%20Plane%20Apertures.%20II.%20Comparison%20of%20Half-Plane%20Diffraction%20Theories&rft.jtitle=Journal%20of%20research%20of%20the%20National%20Institute%20of%20Standards%20and%20Technology&rft.au=Mielenz,%20Klaus%20D&rft.date=2003-01&rft.volume=108&rft.issue=1&rft.spage=57&rft.epage=68&rft.pages=57-68&rft.issn=1044-677X&rft.eissn=2165-7254&rft.coden=JRITEF&rft_id=info:doi/10.6028/jres.108.006&rft_dat=%3Cproquest_pubme%3E743398266%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214784590&rft_id=info:pmid/27413594&rfr_iscdi=true