Elucidating the Mechanism by which Compensatory Mutations Rescue an HIV-1 Matrix Mutant Defective for Gag Membrane Targeting and Envelope Glycoprotein Incorporation

The matrix (MA) domain of the human immunodeficiency virus (HIV) 1 Gag is responsible for Gag targeting to the plasma membrane where virions assemble. MA also plays a role in the incorporation of the viral envelope (Env) glycoproteins and can influence particle infectivity post-maturation and post-e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2015-03, Vol.427 (6), p.1413-1427
Hauptverfasser: Tedbury, Philip R., Mercredi, Peter Y., Gaines, Christy R., Summers, Michael F., Freed, Eric O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1427
container_issue 6
container_start_page 1413
container_title Journal of molecular biology
container_volume 427
creator Tedbury, Philip R.
Mercredi, Peter Y.
Gaines, Christy R.
Summers, Michael F.
Freed, Eric O.
description The matrix (MA) domain of the human immunodeficiency virus (HIV) 1 Gag is responsible for Gag targeting to the plasma membrane where virions assemble. MA also plays a role in the incorporation of the viral envelope (Env) glycoproteins and can influence particle infectivity post-maturation and post-entry. A highly basic region of MA targets Gag to the plasma membrane via specific binding to phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. This binding also triggers exposure of an amino-terminal myristate moiety, which anchors Gag to the membrane. An MA mutant deficient for PI(4,5)P2 binding, 29KE/31KE, has been shown to mislocalize within the cell, leading to particle assembly in a multivesicular body compartment and defective release of cell-free particles in HeLa and 293T cells. Despite the defect in virus production in these cells, release of the 29KE/31KE mutant is not significantly reduced in primary T cells, macrophages and Jurkat T cells. 29KE/31KE virions also display an infectivity defect associated with impaired Env incorporation, irrespective of the producer cell line. Here we examine the properties of 29KE/31KE by analyzing compensatory mutations obtained by a viral adaptation strategy. The MA mutant 16EK restores virus release through enhanced membrane binding. 16EK also influences the infectivity defect, in combination with an additional MA mutant, 62QR. Additionally, the 29KE/31KE MA mutant displays a defect in proteolytic cleavage of the murine leukemia virus Env cytoplasmic tail in pseudotyped virions. Our findings elucidate the mechanism whereby an MA mutant defective in PI(4,5)P2 binding can be rescued and highlight the ability of MA to influence Env glycoprotein function. [Display omitted] •How does MA interact during HIV particle assembly?•MA mutant 29KE/31KE lacks properly targeted Gag trafficking and Env incorporation.•Further defects were found in MA Env interactions, affecting HIV and murine leukemia virus Env.•16EK enhances membrane binding and, with 62QR, Env incorporation.
doi_str_mv 10.1016/j.jmb.2015.01.018
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4844178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283615000741</els_id><sourcerecordid>25659909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-6afc4dffa412d7d13126b74fc1538aa387eaaf36cd929acd9214e553f46896373</originalsourceid><addsrcrecordid>eNp9kd2qEzEUhYMonnr0AbyRvMDUZDI_GQRBau0pnCLI0duwJ7PTSekkQ5JW-z4-qNNWD3ojbJKLrPUtdhYhrzmbc8art7v5bmjnOePlnPFp5BMy40w2mayEfEpmjOV5lktR3ZAXMe4YY6Uo5HNyk5dV2TSsmZGfy_1B2w6SdVuaeqQb1D04Gwfanuj33uqeLvwwoouQfDjRzSFNYu8i_YJRH5CCo3frbxmnG0jB_rgIXKIf0aBO9ojU-EBXsJ3IQxvAIX2AsMVLILiOLt0R935EutqftB-DT2gdXTvtw-jDJesleWZgH_HV7_uWfP20fFjcZfefV-vFh_tMl7xOWQVGF50xUPC8qzsueF61dWE0L4UEELJGACMq3TV5A-eTF1iWwhSVbCpRi1vy_sodD-2AnUaXAuzVGOwA4aQ8WPXvi7O92vqjKmRR8FpOAH4F6OBjDGgevZypc2Vqp6bK1Lkyxfg0Z8-bv0MfHX86mgTvrgKcVj9aDCpqi05jZ8P0xarz9j_4X_fIrAE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Elucidating the Mechanism by which Compensatory Mutations Rescue an HIV-1 Matrix Mutant Defective for Gag Membrane Targeting and Envelope Glycoprotein Incorporation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Tedbury, Philip R. ; Mercredi, Peter Y. ; Gaines, Christy R. ; Summers, Michael F. ; Freed, Eric O.</creator><creatorcontrib>Tedbury, Philip R. ; Mercredi, Peter Y. ; Gaines, Christy R. ; Summers, Michael F. ; Freed, Eric O.</creatorcontrib><description>The matrix (MA) domain of the human immunodeficiency virus (HIV) 1 Gag is responsible for Gag targeting to the plasma membrane where virions assemble. MA also plays a role in the incorporation of the viral envelope (Env) glycoproteins and can influence particle infectivity post-maturation and post-entry. A highly basic region of MA targets Gag to the plasma membrane via specific binding to phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. This binding also triggers exposure of an amino-terminal myristate moiety, which anchors Gag to the membrane. An MA mutant deficient for PI(4,5)P2 binding, 29KE/31KE, has been shown to mislocalize within the cell, leading to particle assembly in a multivesicular body compartment and defective release of cell-free particles in HeLa and 293T cells. Despite the defect in virus production in these cells, release of the 29KE/31KE mutant is not significantly reduced in primary T cells, macrophages and Jurkat T cells. 29KE/31KE virions also display an infectivity defect associated with impaired Env incorporation, irrespective of the producer cell line. Here we examine the properties of 29KE/31KE by analyzing compensatory mutations obtained by a viral adaptation strategy. The MA mutant 16EK restores virus release through enhanced membrane binding. 16EK also influences the infectivity defect, in combination with an additional MA mutant, 62QR. Additionally, the 29KE/31KE MA mutant displays a defect in proteolytic cleavage of the murine leukemia virus Env cytoplasmic tail in pseudotyped virions. Our findings elucidate the mechanism whereby an MA mutant defective in PI(4,5)P2 binding can be rescued and highlight the ability of MA to influence Env glycoprotein function. [Display omitted] •How does MA interact during HIV particle assembly?•MA mutant 29KE/31KE lacks properly targeted Gag trafficking and Env incorporation.•Further defects were found in MA Env interactions, affecting HIV and murine leukemia virus Env.•16EK enhances membrane binding and, with 62QR, Env incorporation.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2015.01.018</identifier><identifier>PMID: 25659909</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>A-MLV ; Blotting, Western ; Cell Membrane - metabolism ; cytoplasmic tail ; Gag ; gag Gene Products, Human Immunodeficiency Virus - chemistry ; gag Gene Products, Human Immunodeficiency Virus - genetics ; gag Gene Products, Human Immunodeficiency Virus - metabolism ; HeLa Cells ; HIV Infections - metabolism ; HIV Infections - virology ; HIV-1 - physiology ; Humans ; Leukemia Virus, Murine - physiology ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Mutagenesis ; Mutation - genetics ; Protein Conformation ; pseudotyping ; retrovirus ; Viral Envelope Proteins - genetics ; Viral Envelope Proteins - metabolism ; Viral Matrix Proteins - chemistry ; Viral Matrix Proteins - genetics ; Viral Matrix Proteins - metabolism ; Virion - metabolism ; Virus Assembly ; Virus Release ; Virus Replication</subject><ispartof>Journal of molecular biology, 2015-03, Vol.427 (6), p.1413-1427</ispartof><rights>2015</rights><rights>Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-6afc4dffa412d7d13126b74fc1538aa387eaaf36cd929acd9214e553f46896373</citedby><cites>FETCH-LOGICAL-c517t-6afc4dffa412d7d13126b74fc1538aa387eaaf36cd929acd9214e553f46896373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmb.2015.01.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25659909$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tedbury, Philip R.</creatorcontrib><creatorcontrib>Mercredi, Peter Y.</creatorcontrib><creatorcontrib>Gaines, Christy R.</creatorcontrib><creatorcontrib>Summers, Michael F.</creatorcontrib><creatorcontrib>Freed, Eric O.</creatorcontrib><title>Elucidating the Mechanism by which Compensatory Mutations Rescue an HIV-1 Matrix Mutant Defective for Gag Membrane Targeting and Envelope Glycoprotein Incorporation</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>The matrix (MA) domain of the human immunodeficiency virus (HIV) 1 Gag is responsible for Gag targeting to the plasma membrane where virions assemble. MA also plays a role in the incorporation of the viral envelope (Env) glycoproteins and can influence particle infectivity post-maturation and post-entry. A highly basic region of MA targets Gag to the plasma membrane via specific binding to phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. This binding also triggers exposure of an amino-terminal myristate moiety, which anchors Gag to the membrane. An MA mutant deficient for PI(4,5)P2 binding, 29KE/31KE, has been shown to mislocalize within the cell, leading to particle assembly in a multivesicular body compartment and defective release of cell-free particles in HeLa and 293T cells. Despite the defect in virus production in these cells, release of the 29KE/31KE mutant is not significantly reduced in primary T cells, macrophages and Jurkat T cells. 29KE/31KE virions also display an infectivity defect associated with impaired Env incorporation, irrespective of the producer cell line. Here we examine the properties of 29KE/31KE by analyzing compensatory mutations obtained by a viral adaptation strategy. The MA mutant 16EK restores virus release through enhanced membrane binding. 16EK also influences the infectivity defect, in combination with an additional MA mutant, 62QR. Additionally, the 29KE/31KE MA mutant displays a defect in proteolytic cleavage of the murine leukemia virus Env cytoplasmic tail in pseudotyped virions. Our findings elucidate the mechanism whereby an MA mutant defective in PI(4,5)P2 binding can be rescued and highlight the ability of MA to influence Env glycoprotein function. [Display omitted] •How does MA interact during HIV particle assembly?•MA mutant 29KE/31KE lacks properly targeted Gag trafficking and Env incorporation.•Further defects were found in MA Env interactions, affecting HIV and murine leukemia virus Env.•16EK enhances membrane binding and, with 62QR, Env incorporation.</description><subject>A-MLV</subject><subject>Blotting, Western</subject><subject>Cell Membrane - metabolism</subject><subject>cytoplasmic tail</subject><subject>Gag</subject><subject>gag Gene Products, Human Immunodeficiency Virus - chemistry</subject><subject>gag Gene Products, Human Immunodeficiency Virus - genetics</subject><subject>gag Gene Products, Human Immunodeficiency Virus - metabolism</subject><subject>HeLa Cells</subject><subject>HIV Infections - metabolism</subject><subject>HIV Infections - virology</subject><subject>HIV-1 - physiology</subject><subject>Humans</subject><subject>Leukemia Virus, Murine - physiology</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Models, Molecular</subject><subject>Mutagenesis</subject><subject>Mutation - genetics</subject><subject>Protein Conformation</subject><subject>pseudotyping</subject><subject>retrovirus</subject><subject>Viral Envelope Proteins - genetics</subject><subject>Viral Envelope Proteins - metabolism</subject><subject>Viral Matrix Proteins - chemistry</subject><subject>Viral Matrix Proteins - genetics</subject><subject>Viral Matrix Proteins - metabolism</subject><subject>Virion - metabolism</subject><subject>Virus Assembly</subject><subject>Virus Release</subject><subject>Virus Replication</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kd2qEzEUhYMonnr0AbyRvMDUZDI_GQRBau0pnCLI0duwJ7PTSekkQ5JW-z4-qNNWD3ojbJKLrPUtdhYhrzmbc8art7v5bmjnOePlnPFp5BMy40w2mayEfEpmjOV5lktR3ZAXMe4YY6Uo5HNyk5dV2TSsmZGfy_1B2w6SdVuaeqQb1D04Gwfanuj33uqeLvwwoouQfDjRzSFNYu8i_YJRH5CCo3frbxmnG0jB_rgIXKIf0aBO9ojU-EBXsJ3IQxvAIX2AsMVLILiOLt0R935EutqftB-DT2gdXTvtw-jDJesleWZgH_HV7_uWfP20fFjcZfefV-vFh_tMl7xOWQVGF50xUPC8qzsueF61dWE0L4UEELJGACMq3TV5A-eTF1iWwhSVbCpRi1vy_sodD-2AnUaXAuzVGOwA4aQ8WPXvi7O92vqjKmRR8FpOAH4F6OBjDGgevZypc2Vqp6bK1Lkyxfg0Z8-bv0MfHX86mgTvrgKcVj9aDCpqi05jZ8P0xarz9j_4X_fIrAE</recordid><startdate>20150327</startdate><enddate>20150327</enddate><creator>Tedbury, Philip R.</creator><creator>Mercredi, Peter Y.</creator><creator>Gaines, Christy R.</creator><creator>Summers, Michael F.</creator><creator>Freed, Eric O.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20150327</creationdate><title>Elucidating the Mechanism by which Compensatory Mutations Rescue an HIV-1 Matrix Mutant Defective for Gag Membrane Targeting and Envelope Glycoprotein Incorporation</title><author>Tedbury, Philip R. ; Mercredi, Peter Y. ; Gaines, Christy R. ; Summers, Michael F. ; Freed, Eric O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-6afc4dffa412d7d13126b74fc1538aa387eaaf36cd929acd9214e553f46896373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>A-MLV</topic><topic>Blotting, Western</topic><topic>Cell Membrane - metabolism</topic><topic>cytoplasmic tail</topic><topic>Gag</topic><topic>gag Gene Products, Human Immunodeficiency Virus - chemistry</topic><topic>gag Gene Products, Human Immunodeficiency Virus - genetics</topic><topic>gag Gene Products, Human Immunodeficiency Virus - metabolism</topic><topic>HeLa Cells</topic><topic>HIV Infections - metabolism</topic><topic>HIV Infections - virology</topic><topic>HIV-1 - physiology</topic><topic>Humans</topic><topic>Leukemia Virus, Murine - physiology</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Models, Molecular</topic><topic>Mutagenesis</topic><topic>Mutation - genetics</topic><topic>Protein Conformation</topic><topic>pseudotyping</topic><topic>retrovirus</topic><topic>Viral Envelope Proteins - genetics</topic><topic>Viral Envelope Proteins - metabolism</topic><topic>Viral Matrix Proteins - chemistry</topic><topic>Viral Matrix Proteins - genetics</topic><topic>Viral Matrix Proteins - metabolism</topic><topic>Virion - metabolism</topic><topic>Virus Assembly</topic><topic>Virus Release</topic><topic>Virus Replication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tedbury, Philip R.</creatorcontrib><creatorcontrib>Mercredi, Peter Y.</creatorcontrib><creatorcontrib>Gaines, Christy R.</creatorcontrib><creatorcontrib>Summers, Michael F.</creatorcontrib><creatorcontrib>Freed, Eric O.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tedbury, Philip R.</au><au>Mercredi, Peter Y.</au><au>Gaines, Christy R.</au><au>Summers, Michael F.</au><au>Freed, Eric O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating the Mechanism by which Compensatory Mutations Rescue an HIV-1 Matrix Mutant Defective for Gag Membrane Targeting and Envelope Glycoprotein Incorporation</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2015-03-27</date><risdate>2015</risdate><volume>427</volume><issue>6</issue><spage>1413</spage><epage>1427</epage><pages>1413-1427</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>The matrix (MA) domain of the human immunodeficiency virus (HIV) 1 Gag is responsible for Gag targeting to the plasma membrane where virions assemble. MA also plays a role in the incorporation of the viral envelope (Env) glycoproteins and can influence particle infectivity post-maturation and post-entry. A highly basic region of MA targets Gag to the plasma membrane via specific binding to phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. This binding also triggers exposure of an amino-terminal myristate moiety, which anchors Gag to the membrane. An MA mutant deficient for PI(4,5)P2 binding, 29KE/31KE, has been shown to mislocalize within the cell, leading to particle assembly in a multivesicular body compartment and defective release of cell-free particles in HeLa and 293T cells. Despite the defect in virus production in these cells, release of the 29KE/31KE mutant is not significantly reduced in primary T cells, macrophages and Jurkat T cells. 29KE/31KE virions also display an infectivity defect associated with impaired Env incorporation, irrespective of the producer cell line. Here we examine the properties of 29KE/31KE by analyzing compensatory mutations obtained by a viral adaptation strategy. The MA mutant 16EK restores virus release through enhanced membrane binding. 16EK also influences the infectivity defect, in combination with an additional MA mutant, 62QR. Additionally, the 29KE/31KE MA mutant displays a defect in proteolytic cleavage of the murine leukemia virus Env cytoplasmic tail in pseudotyped virions. Our findings elucidate the mechanism whereby an MA mutant defective in PI(4,5)P2 binding can be rescued and highlight the ability of MA to influence Env glycoprotein function. [Display omitted] •How does MA interact during HIV particle assembly?•MA mutant 29KE/31KE lacks properly targeted Gag trafficking and Env incorporation.•Further defects were found in MA Env interactions, affecting HIV and murine leukemia virus Env.•16EK enhances membrane binding and, with 62QR, Env incorporation.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>25659909</pmid><doi>10.1016/j.jmb.2015.01.018</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2015-03, Vol.427 (6), p.1413-1427
issn 0022-2836
1089-8638
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4844178
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects A-MLV
Blotting, Western
Cell Membrane - metabolism
cytoplasmic tail
Gag
gag Gene Products, Human Immunodeficiency Virus - chemistry
gag Gene Products, Human Immunodeficiency Virus - genetics
gag Gene Products, Human Immunodeficiency Virus - metabolism
HeLa Cells
HIV Infections - metabolism
HIV Infections - virology
HIV-1 - physiology
Humans
Leukemia Virus, Murine - physiology
Magnetic Resonance Spectroscopy
Models, Molecular
Mutagenesis
Mutation - genetics
Protein Conformation
pseudotyping
retrovirus
Viral Envelope Proteins - genetics
Viral Envelope Proteins - metabolism
Viral Matrix Proteins - chemistry
Viral Matrix Proteins - genetics
Viral Matrix Proteins - metabolism
Virion - metabolism
Virus Assembly
Virus Release
Virus Replication
title Elucidating the Mechanism by which Compensatory Mutations Rescue an HIV-1 Matrix Mutant Defective for Gag Membrane Targeting and Envelope Glycoprotein Incorporation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A40%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20the%20Mechanism%20by%20which%20Compensatory%20Mutations%20Rescue%20an%20HIV-1%20Matrix%20Mutant%20Defective%20for%20Gag%20Membrane%20Targeting%20and%20Envelope%20Glycoprotein%20Incorporation&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Tedbury,%20Philip%20R.&rft.date=2015-03-27&rft.volume=427&rft.issue=6&rft.spage=1413&rft.epage=1427&rft.pages=1413-1427&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2015.01.018&rft_dat=%3Cpubmed_cross%3E25659909%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/25659909&rft_els_id=S0022283615000741&rfr_iscdi=true