Mechano-adaptive sensory mechanism of α-catenin under tension

The contractile forces in individual cells drive the tissue processes, such as morphogenesis and wound healing, and maintain tissue integrity. In these processes, α-catenin molecule acts as a tension sensor at cadherin-based adherens junctions (AJs), accelerating the positive feedback of intercellul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-04, Vol.6 (1), p.24878-24878, Article 24878
Hauptverfasser: Maki, Koichiro, Han, Sung-Woong, Hirano, Yoshinori, Yonemura, Shigenobu, Hakoshima, Toshio, Adachi, Taiji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24878
container_issue 1
container_start_page 24878
container_title Scientific reports
container_volume 6
creator Maki, Koichiro
Han, Sung-Woong
Hirano, Yoshinori
Yonemura, Shigenobu
Hakoshima, Toshio
Adachi, Taiji
description The contractile forces in individual cells drive the tissue processes, such as morphogenesis and wound healing, and maintain tissue integrity. In these processes, α-catenin molecule acts as a tension sensor at cadherin-based adherens junctions (AJs), accelerating the positive feedback of intercellular tension. Under tension, α-catenin is activated to recruit vinculin, which recruits actin filaments to AJs. In this study, we revealed how α-catenin retains its activated state while avoiding unfolding under tension. Using single-molecule force spectroscopy employing atomic force microscopy (AFM), we found that mechanically activated α-catenin fragment had higher mechanical stability than a non-activated fragment. The results of our experiments using mutated and segmented fragments showed that the key intramolecular interactions acted as a conformational switch. We also found that the conformation of α-catenin was reinforced by vinculin binding. We demonstrate that α-catenin adaptively changes its conformation under tension to a stable intermediate state, binds to vinculin, and finally settles into a more stable state reinforced by vinculin binding. Our data suggest that the plastic characteristics of α-catenin, revealed in response to both mechanical and biochemical cues, enable the functional-structural dynamics at the cellular and tissue levels.
doi_str_mv 10.1038/srep24878
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4843013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1784461644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-f4d99b0e16c9019ca520ae522ff1edc10637eaf76f0ec05bb8611203b17079d03</originalsourceid><addsrcrecordid>eNplkc9KAzEQxoMotqgHX0AWvKiwmmSzm-RSkOI_ULzoOWSzs-2WblKT3YKP5Yv4TEarpWouM_D98s0MH0KHBJ8TnImL4GFBmeBiCw0pZnlKM0q3N_oBOghhhuPLqWRE7qIB5QRLJuUQjR7ATLV1qa70omuWkASwwfnXpP0SmtAmrk7e31KjO7CNTXpbgU9iHxpn99FOrecBDr7rHnq-vnoa36b3jzd348v71ORMdGnNKilLDKQwEhNpdE6xhpzSuiZQGYKLjIOueVFjMDgvS1EQQnFWEo65rHC2h0Yr30VftvEH2M7ruVr4ptX-VTndqN-KbaZq4paKCZZhkkWDk28D7156CJ1qm2BgPtcWXB8U4YKxghSMRfT4DzpzvbfxPEWEFAXnOS0idbqijHchZlCvlyFYfQaj1sFE9mhz-zX5E0MEzlZAiJKdgN8Y-c_tAzzpl_0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898677526</pqid></control><display><type>article</type><title>Mechano-adaptive sensory mechanism of α-catenin under tension</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Maki, Koichiro ; Han, Sung-Woong ; Hirano, Yoshinori ; Yonemura, Shigenobu ; Hakoshima, Toshio ; Adachi, Taiji</creator><creatorcontrib>Maki, Koichiro ; Han, Sung-Woong ; Hirano, Yoshinori ; Yonemura, Shigenobu ; Hakoshima, Toshio ; Adachi, Taiji</creatorcontrib><description>The contractile forces in individual cells drive the tissue processes, such as morphogenesis and wound healing, and maintain tissue integrity. In these processes, α-catenin molecule acts as a tension sensor at cadherin-based adherens junctions (AJs), accelerating the positive feedback of intercellular tension. Under tension, α-catenin is activated to recruit vinculin, which recruits actin filaments to AJs. In this study, we revealed how α-catenin retains its activated state while avoiding unfolding under tension. Using single-molecule force spectroscopy employing atomic force microscopy (AFM), we found that mechanically activated α-catenin fragment had higher mechanical stability than a non-activated fragment. The results of our experiments using mutated and segmented fragments showed that the key intramolecular interactions acted as a conformational switch. We also found that the conformation of α-catenin was reinforced by vinculin binding. We demonstrate that α-catenin adaptively changes its conformation under tension to a stable intermediate state, binds to vinculin, and finally settles into a more stable state reinforced by vinculin binding. Our data suggest that the plastic characteristics of α-catenin, revealed in response to both mechanical and biochemical cues, enable the functional-structural dynamics at the cellular and tissue levels.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep24878</identifier><identifier>PMID: 27109499</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57/2265 ; 631/57/2272/2273 ; 639/766/747 ; Actin ; Adherens junctions ; Adherens Junctions - metabolism ; alpha Catenin - metabolism ; Animals ; Atomic force microscopy ; Binding sites ; Cadherins ; Conformation ; Contractility ; Feedback ; Filaments ; Glass substrates ; Humanities and Social Sciences ; Mechanical Phenomena ; Mechanotransduction, Cellular ; Mice ; Microscopy ; Microscopy, Atomic Force ; Morphogenesis ; multidisciplinary ; Protein Conformation ; Protein Folding ; Proteins ; Science ; Single Molecule Imaging ; Spectroscopy ; Spectrum analysis ; Structure-function relationships ; Tension ; Vinculin ; Wound healing ; α-Catenin</subject><ispartof>Scientific reports, 2016-04, Vol.6 (1), p.24878-24878, Article 24878</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Apr 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-f4d99b0e16c9019ca520ae522ff1edc10637eaf76f0ec05bb8611203b17079d03</citedby><cites>FETCH-LOGICAL-c548t-f4d99b0e16c9019ca520ae522ff1edc10637eaf76f0ec05bb8611203b17079d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4843013/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4843013/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27109499$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maki, Koichiro</creatorcontrib><creatorcontrib>Han, Sung-Woong</creatorcontrib><creatorcontrib>Hirano, Yoshinori</creatorcontrib><creatorcontrib>Yonemura, Shigenobu</creatorcontrib><creatorcontrib>Hakoshima, Toshio</creatorcontrib><creatorcontrib>Adachi, Taiji</creatorcontrib><title>Mechano-adaptive sensory mechanism of α-catenin under tension</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The contractile forces in individual cells drive the tissue processes, such as morphogenesis and wound healing, and maintain tissue integrity. In these processes, α-catenin molecule acts as a tension sensor at cadherin-based adherens junctions (AJs), accelerating the positive feedback of intercellular tension. Under tension, α-catenin is activated to recruit vinculin, which recruits actin filaments to AJs. In this study, we revealed how α-catenin retains its activated state while avoiding unfolding under tension. Using single-molecule force spectroscopy employing atomic force microscopy (AFM), we found that mechanically activated α-catenin fragment had higher mechanical stability than a non-activated fragment. The results of our experiments using mutated and segmented fragments showed that the key intramolecular interactions acted as a conformational switch. We also found that the conformation of α-catenin was reinforced by vinculin binding. We demonstrate that α-catenin adaptively changes its conformation under tension to a stable intermediate state, binds to vinculin, and finally settles into a more stable state reinforced by vinculin binding. Our data suggest that the plastic characteristics of α-catenin, revealed in response to both mechanical and biochemical cues, enable the functional-structural dynamics at the cellular and tissue levels.</description><subject>631/57/2265</subject><subject>631/57/2272/2273</subject><subject>639/766/747</subject><subject>Actin</subject><subject>Adherens junctions</subject><subject>Adherens Junctions - metabolism</subject><subject>alpha Catenin - metabolism</subject><subject>Animals</subject><subject>Atomic force microscopy</subject><subject>Binding sites</subject><subject>Cadherins</subject><subject>Conformation</subject><subject>Contractility</subject><subject>Feedback</subject><subject>Filaments</subject><subject>Glass substrates</subject><subject>Humanities and Social Sciences</subject><subject>Mechanical Phenomena</subject><subject>Mechanotransduction, Cellular</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Microscopy, Atomic Force</subject><subject>Morphogenesis</subject><subject>multidisciplinary</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Proteins</subject><subject>Science</subject><subject>Single Molecule Imaging</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Structure-function relationships</subject><subject>Tension</subject><subject>Vinculin</subject><subject>Wound healing</subject><subject>α-Catenin</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkc9KAzEQxoMotqgHX0AWvKiwmmSzm-RSkOI_ULzoOWSzs-2WblKT3YKP5Yv4TEarpWouM_D98s0MH0KHBJ8TnImL4GFBmeBiCw0pZnlKM0q3N_oBOghhhuPLqWRE7qIB5QRLJuUQjR7ATLV1qa70omuWkASwwfnXpP0SmtAmrk7e31KjO7CNTXpbgU9iHxpn99FOrecBDr7rHnq-vnoa36b3jzd348v71ORMdGnNKilLDKQwEhNpdE6xhpzSuiZQGYKLjIOueVFjMDgvS1EQQnFWEo65rHC2h0Yr30VftvEH2M7ruVr4ptX-VTndqN-KbaZq4paKCZZhkkWDk28D7156CJ1qm2BgPtcWXB8U4YKxghSMRfT4DzpzvbfxPEWEFAXnOS0idbqijHchZlCvlyFYfQaj1sFE9mhz-zX5E0MEzlZAiJKdgN8Y-c_tAzzpl_0</recordid><startdate>20160425</startdate><enddate>20160425</enddate><creator>Maki, Koichiro</creator><creator>Han, Sung-Woong</creator><creator>Hirano, Yoshinori</creator><creator>Yonemura, Shigenobu</creator><creator>Hakoshima, Toshio</creator><creator>Adachi, Taiji</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160425</creationdate><title>Mechano-adaptive sensory mechanism of α-catenin under tension</title><author>Maki, Koichiro ; Han, Sung-Woong ; Hirano, Yoshinori ; Yonemura, Shigenobu ; Hakoshima, Toshio ; Adachi, Taiji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-f4d99b0e16c9019ca520ae522ff1edc10637eaf76f0ec05bb8611203b17079d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/57/2265</topic><topic>631/57/2272/2273</topic><topic>639/766/747</topic><topic>Actin</topic><topic>Adherens junctions</topic><topic>Adherens Junctions - metabolism</topic><topic>alpha Catenin - metabolism</topic><topic>Animals</topic><topic>Atomic force microscopy</topic><topic>Binding sites</topic><topic>Cadherins</topic><topic>Conformation</topic><topic>Contractility</topic><topic>Feedback</topic><topic>Filaments</topic><topic>Glass substrates</topic><topic>Humanities and Social Sciences</topic><topic>Mechanical Phenomena</topic><topic>Mechanotransduction, Cellular</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Microscopy, Atomic Force</topic><topic>Morphogenesis</topic><topic>multidisciplinary</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Proteins</topic><topic>Science</topic><topic>Single Molecule Imaging</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Structure-function relationships</topic><topic>Tension</topic><topic>Vinculin</topic><topic>Wound healing</topic><topic>α-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maki, Koichiro</creatorcontrib><creatorcontrib>Han, Sung-Woong</creatorcontrib><creatorcontrib>Hirano, Yoshinori</creatorcontrib><creatorcontrib>Yonemura, Shigenobu</creatorcontrib><creatorcontrib>Hakoshima, Toshio</creatorcontrib><creatorcontrib>Adachi, Taiji</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maki, Koichiro</au><au>Han, Sung-Woong</au><au>Hirano, Yoshinori</au><au>Yonemura, Shigenobu</au><au>Hakoshima, Toshio</au><au>Adachi, Taiji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechano-adaptive sensory mechanism of α-catenin under tension</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-04-25</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>24878</spage><epage>24878</epage><pages>24878-24878</pages><artnum>24878</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The contractile forces in individual cells drive the tissue processes, such as morphogenesis and wound healing, and maintain tissue integrity. In these processes, α-catenin molecule acts as a tension sensor at cadherin-based adherens junctions (AJs), accelerating the positive feedback of intercellular tension. Under tension, α-catenin is activated to recruit vinculin, which recruits actin filaments to AJs. In this study, we revealed how α-catenin retains its activated state while avoiding unfolding under tension. Using single-molecule force spectroscopy employing atomic force microscopy (AFM), we found that mechanically activated α-catenin fragment had higher mechanical stability than a non-activated fragment. The results of our experiments using mutated and segmented fragments showed that the key intramolecular interactions acted as a conformational switch. We also found that the conformation of α-catenin was reinforced by vinculin binding. We demonstrate that α-catenin adaptively changes its conformation under tension to a stable intermediate state, binds to vinculin, and finally settles into a more stable state reinforced by vinculin binding. Our data suggest that the plastic characteristics of α-catenin, revealed in response to both mechanical and biochemical cues, enable the functional-structural dynamics at the cellular and tissue levels.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27109499</pmid><doi>10.1038/srep24878</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-04, Vol.6 (1), p.24878-24878, Article 24878
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4843013
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 631/57/2265
631/57/2272/2273
639/766/747
Actin
Adherens junctions
Adherens Junctions - metabolism
alpha Catenin - metabolism
Animals
Atomic force microscopy
Binding sites
Cadherins
Conformation
Contractility
Feedback
Filaments
Glass substrates
Humanities and Social Sciences
Mechanical Phenomena
Mechanotransduction, Cellular
Mice
Microscopy
Microscopy, Atomic Force
Morphogenesis
multidisciplinary
Protein Conformation
Protein Folding
Proteins
Science
Single Molecule Imaging
Spectroscopy
Spectrum analysis
Structure-function relationships
Tension
Vinculin
Wound healing
α-Catenin
title Mechano-adaptive sensory mechanism of α-catenin under tension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A02%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechano-adaptive%20sensory%20mechanism%20of%20%CE%B1-catenin%20under%20tension&rft.jtitle=Scientific%20reports&rft.au=Maki,%20Koichiro&rft.date=2016-04-25&rft.volume=6&rft.issue=1&rft.spage=24878&rft.epage=24878&rft.pages=24878-24878&rft.artnum=24878&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep24878&rft_dat=%3Cproquest_pubme%3E1784461644%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898677526&rft_id=info:pmid/27109499&rfr_iscdi=true