Mechano-adaptive sensory mechanism of α-catenin under tension
The contractile forces in individual cells drive the tissue processes, such as morphogenesis and wound healing, and maintain tissue integrity. In these processes, α-catenin molecule acts as a tension sensor at cadherin-based adherens junctions (AJs), accelerating the positive feedback of intercellul...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-04, Vol.6 (1), p.24878-24878, Article 24878 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24878 |
---|---|
container_issue | 1 |
container_start_page | 24878 |
container_title | Scientific reports |
container_volume | 6 |
creator | Maki, Koichiro Han, Sung-Woong Hirano, Yoshinori Yonemura, Shigenobu Hakoshima, Toshio Adachi, Taiji |
description | The contractile forces in individual cells drive the tissue processes, such as morphogenesis and wound healing, and maintain tissue integrity. In these processes, α-catenin molecule acts as a tension sensor at cadherin-based adherens junctions (AJs), accelerating the positive feedback of intercellular tension. Under tension, α-catenin is activated to recruit vinculin, which recruits actin filaments to AJs. In this study, we revealed how α-catenin retains its activated state while avoiding unfolding under tension. Using single-molecule force spectroscopy employing atomic force microscopy (AFM), we found that mechanically activated α-catenin fragment had higher mechanical stability than a non-activated fragment. The results of our experiments using mutated and segmented fragments showed that the key intramolecular interactions acted as a conformational switch. We also found that the conformation of α-catenin was reinforced by vinculin binding. We demonstrate that α-catenin adaptively changes its conformation under tension to a stable intermediate state, binds to vinculin, and finally settles into a more stable state reinforced by vinculin binding. Our data suggest that the plastic characteristics of α-catenin, revealed in response to both mechanical and biochemical cues, enable the functional-structural dynamics at the cellular and tissue levels. |
doi_str_mv | 10.1038/srep24878 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4843013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1784461644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-f4d99b0e16c9019ca520ae522ff1edc10637eaf76f0ec05bb8611203b17079d03</originalsourceid><addsrcrecordid>eNplkc9KAzEQxoMotqgHX0AWvKiwmmSzm-RSkOI_ULzoOWSzs-2WblKT3YKP5Yv4TEarpWouM_D98s0MH0KHBJ8TnImL4GFBmeBiCw0pZnlKM0q3N_oBOghhhuPLqWRE7qIB5QRLJuUQjR7ATLV1qa70omuWkASwwfnXpP0SmtAmrk7e31KjO7CNTXpbgU9iHxpn99FOrecBDr7rHnq-vnoa36b3jzd348v71ORMdGnNKilLDKQwEhNpdE6xhpzSuiZQGYKLjIOueVFjMDgvS1EQQnFWEo65rHC2h0Yr30VftvEH2M7ruVr4ptX-VTndqN-KbaZq4paKCZZhkkWDk28D7156CJ1qm2BgPtcWXB8U4YKxghSMRfT4DzpzvbfxPEWEFAXnOS0idbqijHchZlCvlyFYfQaj1sFE9mhz-zX5E0MEzlZAiJKdgN8Y-c_tAzzpl_0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898677526</pqid></control><display><type>article</type><title>Mechano-adaptive sensory mechanism of α-catenin under tension</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Maki, Koichiro ; Han, Sung-Woong ; Hirano, Yoshinori ; Yonemura, Shigenobu ; Hakoshima, Toshio ; Adachi, Taiji</creator><creatorcontrib>Maki, Koichiro ; Han, Sung-Woong ; Hirano, Yoshinori ; Yonemura, Shigenobu ; Hakoshima, Toshio ; Adachi, Taiji</creatorcontrib><description>The contractile forces in individual cells drive the tissue processes, such as morphogenesis and wound healing, and maintain tissue integrity. In these processes, α-catenin molecule acts as a tension sensor at cadherin-based adherens junctions (AJs), accelerating the positive feedback of intercellular tension. Under tension, α-catenin is activated to recruit vinculin, which recruits actin filaments to AJs. In this study, we revealed how α-catenin retains its activated state while avoiding unfolding under tension. Using single-molecule force spectroscopy employing atomic force microscopy (AFM), we found that mechanically activated α-catenin fragment had higher mechanical stability than a non-activated fragment. The results of our experiments using mutated and segmented fragments showed that the key intramolecular interactions acted as a conformational switch. We also found that the conformation of α-catenin was reinforced by vinculin binding. We demonstrate that α-catenin adaptively changes its conformation under tension to a stable intermediate state, binds to vinculin, and finally settles into a more stable state reinforced by vinculin binding. Our data suggest that the plastic characteristics of α-catenin, revealed in response to both mechanical and biochemical cues, enable the functional-structural dynamics at the cellular and tissue levels.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep24878</identifier><identifier>PMID: 27109499</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57/2265 ; 631/57/2272/2273 ; 639/766/747 ; Actin ; Adherens junctions ; Adherens Junctions - metabolism ; alpha Catenin - metabolism ; Animals ; Atomic force microscopy ; Binding sites ; Cadherins ; Conformation ; Contractility ; Feedback ; Filaments ; Glass substrates ; Humanities and Social Sciences ; Mechanical Phenomena ; Mechanotransduction, Cellular ; Mice ; Microscopy ; Microscopy, Atomic Force ; Morphogenesis ; multidisciplinary ; Protein Conformation ; Protein Folding ; Proteins ; Science ; Single Molecule Imaging ; Spectroscopy ; Spectrum analysis ; Structure-function relationships ; Tension ; Vinculin ; Wound healing ; α-Catenin</subject><ispartof>Scientific reports, 2016-04, Vol.6 (1), p.24878-24878, Article 24878</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Apr 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-f4d99b0e16c9019ca520ae522ff1edc10637eaf76f0ec05bb8611203b17079d03</citedby><cites>FETCH-LOGICAL-c548t-f4d99b0e16c9019ca520ae522ff1edc10637eaf76f0ec05bb8611203b17079d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4843013/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4843013/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27109499$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maki, Koichiro</creatorcontrib><creatorcontrib>Han, Sung-Woong</creatorcontrib><creatorcontrib>Hirano, Yoshinori</creatorcontrib><creatorcontrib>Yonemura, Shigenobu</creatorcontrib><creatorcontrib>Hakoshima, Toshio</creatorcontrib><creatorcontrib>Adachi, Taiji</creatorcontrib><title>Mechano-adaptive sensory mechanism of α-catenin under tension</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The contractile forces in individual cells drive the tissue processes, such as morphogenesis and wound healing, and maintain tissue integrity. In these processes, α-catenin molecule acts as a tension sensor at cadherin-based adherens junctions (AJs), accelerating the positive feedback of intercellular tension. Under tension, α-catenin is activated to recruit vinculin, which recruits actin filaments to AJs. In this study, we revealed how α-catenin retains its activated state while avoiding unfolding under tension. Using single-molecule force spectroscopy employing atomic force microscopy (AFM), we found that mechanically activated α-catenin fragment had higher mechanical stability than a non-activated fragment. The results of our experiments using mutated and segmented fragments showed that the key intramolecular interactions acted as a conformational switch. We also found that the conformation of α-catenin was reinforced by vinculin binding. We demonstrate that α-catenin adaptively changes its conformation under tension to a stable intermediate state, binds to vinculin, and finally settles into a more stable state reinforced by vinculin binding. Our data suggest that the plastic characteristics of α-catenin, revealed in response to both mechanical and biochemical cues, enable the functional-structural dynamics at the cellular and tissue levels.</description><subject>631/57/2265</subject><subject>631/57/2272/2273</subject><subject>639/766/747</subject><subject>Actin</subject><subject>Adherens junctions</subject><subject>Adherens Junctions - metabolism</subject><subject>alpha Catenin - metabolism</subject><subject>Animals</subject><subject>Atomic force microscopy</subject><subject>Binding sites</subject><subject>Cadherins</subject><subject>Conformation</subject><subject>Contractility</subject><subject>Feedback</subject><subject>Filaments</subject><subject>Glass substrates</subject><subject>Humanities and Social Sciences</subject><subject>Mechanical Phenomena</subject><subject>Mechanotransduction, Cellular</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Microscopy, Atomic Force</subject><subject>Morphogenesis</subject><subject>multidisciplinary</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Proteins</subject><subject>Science</subject><subject>Single Molecule Imaging</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Structure-function relationships</subject><subject>Tension</subject><subject>Vinculin</subject><subject>Wound healing</subject><subject>α-Catenin</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkc9KAzEQxoMotqgHX0AWvKiwmmSzm-RSkOI_ULzoOWSzs-2WblKT3YKP5Yv4TEarpWouM_D98s0MH0KHBJ8TnImL4GFBmeBiCw0pZnlKM0q3N_oBOghhhuPLqWRE7qIB5QRLJuUQjR7ATLV1qa70omuWkASwwfnXpP0SmtAmrk7e31KjO7CNTXpbgU9iHxpn99FOrecBDr7rHnq-vnoa36b3jzd348v71ORMdGnNKilLDKQwEhNpdE6xhpzSuiZQGYKLjIOueVFjMDgvS1EQQnFWEo65rHC2h0Yr30VftvEH2M7ruVr4ptX-VTndqN-KbaZq4paKCZZhkkWDk28D7156CJ1qm2BgPtcWXB8U4YKxghSMRfT4DzpzvbfxPEWEFAXnOS0idbqijHchZlCvlyFYfQaj1sFE9mhz-zX5E0MEzlZAiJKdgN8Y-c_tAzzpl_0</recordid><startdate>20160425</startdate><enddate>20160425</enddate><creator>Maki, Koichiro</creator><creator>Han, Sung-Woong</creator><creator>Hirano, Yoshinori</creator><creator>Yonemura, Shigenobu</creator><creator>Hakoshima, Toshio</creator><creator>Adachi, Taiji</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160425</creationdate><title>Mechano-adaptive sensory mechanism of α-catenin under tension</title><author>Maki, Koichiro ; Han, Sung-Woong ; Hirano, Yoshinori ; Yonemura, Shigenobu ; Hakoshima, Toshio ; Adachi, Taiji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-f4d99b0e16c9019ca520ae522ff1edc10637eaf76f0ec05bb8611203b17079d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/57/2265</topic><topic>631/57/2272/2273</topic><topic>639/766/747</topic><topic>Actin</topic><topic>Adherens junctions</topic><topic>Adherens Junctions - metabolism</topic><topic>alpha Catenin - metabolism</topic><topic>Animals</topic><topic>Atomic force microscopy</topic><topic>Binding sites</topic><topic>Cadherins</topic><topic>Conformation</topic><topic>Contractility</topic><topic>Feedback</topic><topic>Filaments</topic><topic>Glass substrates</topic><topic>Humanities and Social Sciences</topic><topic>Mechanical Phenomena</topic><topic>Mechanotransduction, Cellular</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Microscopy, Atomic Force</topic><topic>Morphogenesis</topic><topic>multidisciplinary</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Proteins</topic><topic>Science</topic><topic>Single Molecule Imaging</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Structure-function relationships</topic><topic>Tension</topic><topic>Vinculin</topic><topic>Wound healing</topic><topic>α-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maki, Koichiro</creatorcontrib><creatorcontrib>Han, Sung-Woong</creatorcontrib><creatorcontrib>Hirano, Yoshinori</creatorcontrib><creatorcontrib>Yonemura, Shigenobu</creatorcontrib><creatorcontrib>Hakoshima, Toshio</creatorcontrib><creatorcontrib>Adachi, Taiji</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maki, Koichiro</au><au>Han, Sung-Woong</au><au>Hirano, Yoshinori</au><au>Yonemura, Shigenobu</au><au>Hakoshima, Toshio</au><au>Adachi, Taiji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechano-adaptive sensory mechanism of α-catenin under tension</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-04-25</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>24878</spage><epage>24878</epage><pages>24878-24878</pages><artnum>24878</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The contractile forces in individual cells drive the tissue processes, such as morphogenesis and wound healing, and maintain tissue integrity. In these processes, α-catenin molecule acts as a tension sensor at cadherin-based adherens junctions (AJs), accelerating the positive feedback of intercellular tension. Under tension, α-catenin is activated to recruit vinculin, which recruits actin filaments to AJs. In this study, we revealed how α-catenin retains its activated state while avoiding unfolding under tension. Using single-molecule force spectroscopy employing atomic force microscopy (AFM), we found that mechanically activated α-catenin fragment had higher mechanical stability than a non-activated fragment. The results of our experiments using mutated and segmented fragments showed that the key intramolecular interactions acted as a conformational switch. We also found that the conformation of α-catenin was reinforced by vinculin binding. We demonstrate that α-catenin adaptively changes its conformation under tension to a stable intermediate state, binds to vinculin, and finally settles into a more stable state reinforced by vinculin binding. Our data suggest that the plastic characteristics of α-catenin, revealed in response to both mechanical and biochemical cues, enable the functional-structural dynamics at the cellular and tissue levels.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27109499</pmid><doi>10.1038/srep24878</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-04, Vol.6 (1), p.24878-24878, Article 24878 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4843013 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 631/57/2265 631/57/2272/2273 639/766/747 Actin Adherens junctions Adherens Junctions - metabolism alpha Catenin - metabolism Animals Atomic force microscopy Binding sites Cadherins Conformation Contractility Feedback Filaments Glass substrates Humanities and Social Sciences Mechanical Phenomena Mechanotransduction, Cellular Mice Microscopy Microscopy, Atomic Force Morphogenesis multidisciplinary Protein Conformation Protein Folding Proteins Science Single Molecule Imaging Spectroscopy Spectrum analysis Structure-function relationships Tension Vinculin Wound healing α-Catenin |
title | Mechano-adaptive sensory mechanism of α-catenin under tension |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A02%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechano-adaptive%20sensory%20mechanism%20of%20%CE%B1-catenin%20under%20tension&rft.jtitle=Scientific%20reports&rft.au=Maki,%20Koichiro&rft.date=2016-04-25&rft.volume=6&rft.issue=1&rft.spage=24878&rft.epage=24878&rft.pages=24878-24878&rft.artnum=24878&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep24878&rft_dat=%3Cproquest_pubme%3E1784461644%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898677526&rft_id=info:pmid/27109499&rfr_iscdi=true |