Parenchymal Volumetric Assessment as a Predictive Tool to Determine Renal Function Benefit of Nephron-Sparing Surgery Compared with Radical Nephrectomy

To develop a preoperative prediction model using a computer-assisted volumetric assessment of potential spared parenchyma to estimate the probability of chronic kidney disease (CKD, estimated glomerular filtration rate [eGFR]

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of endourology 2016-01, Vol.30 (1), p.114-121
Hauptverfasser: Liss, Michael A, DeConde, Robert, Caovan, Dominique, Hofler, Joseph, Gabe, Michael, Palazzi, Kerrin L, Patel, Nishant D, Lee, Hak J, Ideker, Trey, Van Poppel, Hendrik, Karow, David, Aertsen, Michael, Casola, Giovanna, Derweesh, Ithaar H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121
container_issue 1
container_start_page 114
container_title Journal of endourology
container_volume 30
creator Liss, Michael A
DeConde, Robert
Caovan, Dominique
Hofler, Joseph
Gabe, Michael
Palazzi, Kerrin L
Patel, Nishant D
Lee, Hak J
Ideker, Trey
Van Poppel, Hendrik
Karow, David
Aertsen, Michael
Casola, Giovanna
Derweesh, Ithaar H
description To develop a preoperative prediction model using a computer-assisted volumetric assessment of potential spared parenchyma to estimate the probability of chronic kidney disease (CKD, estimated glomerular filtration rate [eGFR]
doi_str_mv 10.1089/end.2015.0411
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4841003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760871567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-e958db2a74291ff6c687efd46f684e2e2615a6ad923b5f11e7b652480bf0e8b13</originalsourceid><addsrcrecordid>eNpVkU9vFCEYh4nR2LV69Go4epktzB9gLiZ1tbZJU5u2Gm-EYV52MQOswNTsJ_Hrlm1roycS3oeH95cfQm8pWVIi-iPw47ImtFuSltJnaEG7jlc9IT-eo0WZ1xXnPTlAr1L6SQhtGG1eooOa0b5uBFmgP5cqgtebnVMT_h6m2UGOVuPjlCAlBz5jlbDClxFGq7O9BXwTwoRzwJ8gQ3TWA74CX16fzL4AweOP4MHYjIPBF7DdxOCr662K1q_x9RzXEHd4FVy5gRH_tnmDr1RxF8M9DToHt3uNXhg1JXjzeB6ibyefb1an1fnXL2er4_NKN4LnCvpOjEOteFv31BimmeBgxpYZJlqooQTtFFNjSTt0hlLgA-vqVpDBEBADbQ7Rhwfvdh4cjLoEjmqS22idijsZlJX_T7zdyHW4la1oKSFNEbx_FMTwa4aUpbNJwzQpD2FOknJGBKcd4wWtHlAdQ0oRzNM3lMh9mbKUKfdlyn2ZhX_3725P9N_2mjueG58V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760871567</pqid></control><display><type>article</type><title>Parenchymal Volumetric Assessment as a Predictive Tool to Determine Renal Function Benefit of Nephron-Sparing Surgery Compared with Radical Nephrectomy</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Liss, Michael A ; DeConde, Robert ; Caovan, Dominique ; Hofler, Joseph ; Gabe, Michael ; Palazzi, Kerrin L ; Patel, Nishant D ; Lee, Hak J ; Ideker, Trey ; Van Poppel, Hendrik ; Karow, David ; Aertsen, Michael ; Casola, Giovanna ; Derweesh, Ithaar H</creator><creatorcontrib>Liss, Michael A ; DeConde, Robert ; Caovan, Dominique ; Hofler, Joseph ; Gabe, Michael ; Palazzi, Kerrin L ; Patel, Nishant D ; Lee, Hak J ; Ideker, Trey ; Van Poppel, Hendrik ; Karow, David ; Aertsen, Michael ; Casola, Giovanna ; Derweesh, Ithaar H</creatorcontrib><description>To develop a preoperative prediction model using a computer-assisted volumetric assessment of potential spared parenchyma to estimate the probability of chronic kidney disease (CKD, estimated glomerular filtration rate [eGFR] &lt;60 mL/min/1.73 m(2)) 6 months from extirpative renal surgery (nephron-sparing surgery [NSS] or radical nephrectomy [RN]). Retrospective analysis of patients who underwent NSS or RN at our institution from January 2000 to June 2013 with a compatible CT scan 6-month renal function follow-up was performed. Primary outcome was defined as the accuracy of 6-month postoperative eGFR compared with actual postoperative eGFR based on root mean square error (RMSE). Models were constructed using renal volumes and externally validated. A clinical tool was developed on the best model after a given surgical procedure using area under the curve (AUC). We identified 130 (51 radical, 79 partial) patients with a median age of 58 years (interquartile range [IQR] 48-67) and preoperative eGFR of 82.1 (IQR 65.9-104.3); postoperative CKD (eGFR &lt;60) developed in 42% (55/130). We performed various linear regression models to predict postoperative eGFR. The Quadratic model was the highest performing model, which relied only on preoperative GFR and the volumetric data for a RMSE of 15.3 on external validation corresponding to a clinical tool with an AUC of 0.89. Volumetric-based assessment provides information to predict postoperative eGFR. A tool based on this equation may assist surgical counseling regarding renal functional outcomes before renal tumor surgical procedures.</description><identifier>ISSN: 0892-7790</identifier><identifier>EISSN: 1557-900X</identifier><identifier>DOI: 10.1089/end.2015.0411</identifier><identifier>PMID: 26192380</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Aged ; Carcinoma, Renal Cell - diagnostic imaging ; Carcinoma, Renal Cell - pathology ; Carcinoma, Renal Cell - surgery ; Decision Support Techniques ; Female ; General Research ; Glomerular Filtration Rate ; Humans ; Image Processing, Computer-Assisted ; Kidney - diagnostic imaging ; Kidney - surgery ; Kidney Neoplasms - diagnostic imaging ; Kidney Neoplasms - pathology ; Kidney Neoplasms - surgery ; Linear Models ; Male ; Middle Aged ; Nephrectomy - methods ; Nephrons ; Organ Size ; Organ Sparing Treatments - methods ; Postoperative Complications - epidemiology ; Radiography ; Renal Insufficiency, Chronic - epidemiology ; Retrospective Studies ; Tumor Burden</subject><ispartof>Journal of endourology, 2016-01, Vol.30 (1), p.114-121</ispartof><rights>Copyright 2016, Mary Ann Liebert, Inc. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-e958db2a74291ff6c687efd46f684e2e2615a6ad923b5f11e7b652480bf0e8b13</citedby><cites>FETCH-LOGICAL-c387t-e958db2a74291ff6c687efd46f684e2e2615a6ad923b5f11e7b652480bf0e8b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26192380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liss, Michael A</creatorcontrib><creatorcontrib>DeConde, Robert</creatorcontrib><creatorcontrib>Caovan, Dominique</creatorcontrib><creatorcontrib>Hofler, Joseph</creatorcontrib><creatorcontrib>Gabe, Michael</creatorcontrib><creatorcontrib>Palazzi, Kerrin L</creatorcontrib><creatorcontrib>Patel, Nishant D</creatorcontrib><creatorcontrib>Lee, Hak J</creatorcontrib><creatorcontrib>Ideker, Trey</creatorcontrib><creatorcontrib>Van Poppel, Hendrik</creatorcontrib><creatorcontrib>Karow, David</creatorcontrib><creatorcontrib>Aertsen, Michael</creatorcontrib><creatorcontrib>Casola, Giovanna</creatorcontrib><creatorcontrib>Derweesh, Ithaar H</creatorcontrib><title>Parenchymal Volumetric Assessment as a Predictive Tool to Determine Renal Function Benefit of Nephron-Sparing Surgery Compared with Radical Nephrectomy</title><title>Journal of endourology</title><addtitle>J Endourol</addtitle><description>To develop a preoperative prediction model using a computer-assisted volumetric assessment of potential spared parenchyma to estimate the probability of chronic kidney disease (CKD, estimated glomerular filtration rate [eGFR] &lt;60 mL/min/1.73 m(2)) 6 months from extirpative renal surgery (nephron-sparing surgery [NSS] or radical nephrectomy [RN]). Retrospective analysis of patients who underwent NSS or RN at our institution from January 2000 to June 2013 with a compatible CT scan 6-month renal function follow-up was performed. Primary outcome was defined as the accuracy of 6-month postoperative eGFR compared with actual postoperative eGFR based on root mean square error (RMSE). Models were constructed using renal volumes and externally validated. A clinical tool was developed on the best model after a given surgical procedure using area under the curve (AUC). We identified 130 (51 radical, 79 partial) patients with a median age of 58 years (interquartile range [IQR] 48-67) and preoperative eGFR of 82.1 (IQR 65.9-104.3); postoperative CKD (eGFR &lt;60) developed in 42% (55/130). We performed various linear regression models to predict postoperative eGFR. The Quadratic model was the highest performing model, which relied only on preoperative GFR and the volumetric data for a RMSE of 15.3 on external validation corresponding to a clinical tool with an AUC of 0.89. Volumetric-based assessment provides information to predict postoperative eGFR. A tool based on this equation may assist surgical counseling regarding renal functional outcomes before renal tumor surgical procedures.</description><subject>Aged</subject><subject>Carcinoma, Renal Cell - diagnostic imaging</subject><subject>Carcinoma, Renal Cell - pathology</subject><subject>Carcinoma, Renal Cell - surgery</subject><subject>Decision Support Techniques</subject><subject>Female</subject><subject>General Research</subject><subject>Glomerular Filtration Rate</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Kidney - diagnostic imaging</subject><subject>Kidney - surgery</subject><subject>Kidney Neoplasms - diagnostic imaging</subject><subject>Kidney Neoplasms - pathology</subject><subject>Kidney Neoplasms - surgery</subject><subject>Linear Models</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Nephrectomy - methods</subject><subject>Nephrons</subject><subject>Organ Size</subject><subject>Organ Sparing Treatments - methods</subject><subject>Postoperative Complications - epidemiology</subject><subject>Radiography</subject><subject>Renal Insufficiency, Chronic - epidemiology</subject><subject>Retrospective Studies</subject><subject>Tumor Burden</subject><issn>0892-7790</issn><issn>1557-900X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU9vFCEYh4nR2LV69Go4epktzB9gLiZ1tbZJU5u2Gm-EYV52MQOswNTsJ_Hrlm1roycS3oeH95cfQm8pWVIi-iPw47ImtFuSltJnaEG7jlc9IT-eo0WZ1xXnPTlAr1L6SQhtGG1eooOa0b5uBFmgP5cqgtebnVMT_h6m2UGOVuPjlCAlBz5jlbDClxFGq7O9BXwTwoRzwJ8gQ3TWA74CX16fzL4AweOP4MHYjIPBF7DdxOCr662K1q_x9RzXEHd4FVy5gRH_tnmDr1RxF8M9DToHt3uNXhg1JXjzeB6ibyefb1an1fnXL2er4_NKN4LnCvpOjEOteFv31BimmeBgxpYZJlqooQTtFFNjSTt0hlLgA-vqVpDBEBADbQ7Rhwfvdh4cjLoEjmqS22idijsZlJX_T7zdyHW4la1oKSFNEbx_FMTwa4aUpbNJwzQpD2FOknJGBKcd4wWtHlAdQ0oRzNM3lMh9mbKUKfdlyn2ZhX_3725P9N_2mjueG58V</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Liss, Michael A</creator><creator>DeConde, Robert</creator><creator>Caovan, Dominique</creator><creator>Hofler, Joseph</creator><creator>Gabe, Michael</creator><creator>Palazzi, Kerrin L</creator><creator>Patel, Nishant D</creator><creator>Lee, Hak J</creator><creator>Ideker, Trey</creator><creator>Van Poppel, Hendrik</creator><creator>Karow, David</creator><creator>Aertsen, Michael</creator><creator>Casola, Giovanna</creator><creator>Derweesh, Ithaar H</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201601</creationdate><title>Parenchymal Volumetric Assessment as a Predictive Tool to Determine Renal Function Benefit of Nephron-Sparing Surgery Compared with Radical Nephrectomy</title><author>Liss, Michael A ; DeConde, Robert ; Caovan, Dominique ; Hofler, Joseph ; Gabe, Michael ; Palazzi, Kerrin L ; Patel, Nishant D ; Lee, Hak J ; Ideker, Trey ; Van Poppel, Hendrik ; Karow, David ; Aertsen, Michael ; Casola, Giovanna ; Derweesh, Ithaar H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-e958db2a74291ff6c687efd46f684e2e2615a6ad923b5f11e7b652480bf0e8b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aged</topic><topic>Carcinoma, Renal Cell - diagnostic imaging</topic><topic>Carcinoma, Renal Cell - pathology</topic><topic>Carcinoma, Renal Cell - surgery</topic><topic>Decision Support Techniques</topic><topic>Female</topic><topic>General Research</topic><topic>Glomerular Filtration Rate</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Kidney - diagnostic imaging</topic><topic>Kidney - surgery</topic><topic>Kidney Neoplasms - diagnostic imaging</topic><topic>Kidney Neoplasms - pathology</topic><topic>Kidney Neoplasms - surgery</topic><topic>Linear Models</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Nephrectomy - methods</topic><topic>Nephrons</topic><topic>Organ Size</topic><topic>Organ Sparing Treatments - methods</topic><topic>Postoperative Complications - epidemiology</topic><topic>Radiography</topic><topic>Renal Insufficiency, Chronic - epidemiology</topic><topic>Retrospective Studies</topic><topic>Tumor Burden</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liss, Michael A</creatorcontrib><creatorcontrib>DeConde, Robert</creatorcontrib><creatorcontrib>Caovan, Dominique</creatorcontrib><creatorcontrib>Hofler, Joseph</creatorcontrib><creatorcontrib>Gabe, Michael</creatorcontrib><creatorcontrib>Palazzi, Kerrin L</creatorcontrib><creatorcontrib>Patel, Nishant D</creatorcontrib><creatorcontrib>Lee, Hak J</creatorcontrib><creatorcontrib>Ideker, Trey</creatorcontrib><creatorcontrib>Van Poppel, Hendrik</creatorcontrib><creatorcontrib>Karow, David</creatorcontrib><creatorcontrib>Aertsen, Michael</creatorcontrib><creatorcontrib>Casola, Giovanna</creatorcontrib><creatorcontrib>Derweesh, Ithaar H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of endourology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liss, Michael A</au><au>DeConde, Robert</au><au>Caovan, Dominique</au><au>Hofler, Joseph</au><au>Gabe, Michael</au><au>Palazzi, Kerrin L</au><au>Patel, Nishant D</au><au>Lee, Hak J</au><au>Ideker, Trey</au><au>Van Poppel, Hendrik</au><au>Karow, David</au><au>Aertsen, Michael</au><au>Casola, Giovanna</au><au>Derweesh, Ithaar H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parenchymal Volumetric Assessment as a Predictive Tool to Determine Renal Function Benefit of Nephron-Sparing Surgery Compared with Radical Nephrectomy</atitle><jtitle>Journal of endourology</jtitle><addtitle>J Endourol</addtitle><date>2016-01</date><risdate>2016</risdate><volume>30</volume><issue>1</issue><spage>114</spage><epage>121</epage><pages>114-121</pages><issn>0892-7790</issn><eissn>1557-900X</eissn><abstract>To develop a preoperative prediction model using a computer-assisted volumetric assessment of potential spared parenchyma to estimate the probability of chronic kidney disease (CKD, estimated glomerular filtration rate [eGFR] &lt;60 mL/min/1.73 m(2)) 6 months from extirpative renal surgery (nephron-sparing surgery [NSS] or radical nephrectomy [RN]). Retrospective analysis of patients who underwent NSS or RN at our institution from January 2000 to June 2013 with a compatible CT scan 6-month renal function follow-up was performed. Primary outcome was defined as the accuracy of 6-month postoperative eGFR compared with actual postoperative eGFR based on root mean square error (RMSE). Models were constructed using renal volumes and externally validated. A clinical tool was developed on the best model after a given surgical procedure using area under the curve (AUC). We identified 130 (51 radical, 79 partial) patients with a median age of 58 years (interquartile range [IQR] 48-67) and preoperative eGFR of 82.1 (IQR 65.9-104.3); postoperative CKD (eGFR &lt;60) developed in 42% (55/130). We performed various linear regression models to predict postoperative eGFR. The Quadratic model was the highest performing model, which relied only on preoperative GFR and the volumetric data for a RMSE of 15.3 on external validation corresponding to a clinical tool with an AUC of 0.89. Volumetric-based assessment provides information to predict postoperative eGFR. A tool based on this equation may assist surgical counseling regarding renal functional outcomes before renal tumor surgical procedures.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>26192380</pmid><doi>10.1089/end.2015.0411</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0892-7790
ispartof Journal of endourology, 2016-01, Vol.30 (1), p.114-121
issn 0892-7790
1557-900X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4841003
source MEDLINE; Alma/SFX Local Collection
subjects Aged
Carcinoma, Renal Cell - diagnostic imaging
Carcinoma, Renal Cell - pathology
Carcinoma, Renal Cell - surgery
Decision Support Techniques
Female
General Research
Glomerular Filtration Rate
Humans
Image Processing, Computer-Assisted
Kidney - diagnostic imaging
Kidney - surgery
Kidney Neoplasms - diagnostic imaging
Kidney Neoplasms - pathology
Kidney Neoplasms - surgery
Linear Models
Male
Middle Aged
Nephrectomy - methods
Nephrons
Organ Size
Organ Sparing Treatments - methods
Postoperative Complications - epidemiology
Radiography
Renal Insufficiency, Chronic - epidemiology
Retrospective Studies
Tumor Burden
title Parenchymal Volumetric Assessment as a Predictive Tool to Determine Renal Function Benefit of Nephron-Sparing Surgery Compared with Radical Nephrectomy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parenchymal%20Volumetric%20Assessment%20as%20a%20Predictive%20Tool%20to%20Determine%20Renal%20Function%20Benefit%20of%20Nephron-Sparing%20Surgery%20Compared%20with%20Radical%20Nephrectomy&rft.jtitle=Journal%20of%20endourology&rft.au=Liss,%20Michael%20A&rft.date=2016-01&rft.volume=30&rft.issue=1&rft.spage=114&rft.epage=121&rft.pages=114-121&rft.issn=0892-7790&rft.eissn=1557-900X&rft_id=info:doi/10.1089/end.2015.0411&rft_dat=%3Cproquest_pubme%3E1760871567%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1760871567&rft_id=info:pmid/26192380&rfr_iscdi=true