Controlled DNA double-strand break induction in mice reveals post-damage transcriptome stability
DNA double-strand breaks (DSBs) and their repair can cause extensive epigenetic changes. As a result, DSBs have been proposed to promote transcriptional and, ultimately, physiological dysfunction via both cell-intrinsic and cell-non-autonomous pathways. Studying the consequences of DSBs in higher or...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2016-04, Vol.44 (7), p.e64-e64 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e64 |
---|---|
container_issue | 7 |
container_start_page | e64 |
container_title | Nucleic acids research |
container_volume | 44 |
creator | Kim, Jeongkyu Sturgill, David Tran, Andy D Sinclair, David A Oberdoerffer, Philipp |
description | DNA double-strand breaks (DSBs) and their repair can cause extensive epigenetic changes. As a result, DSBs have been proposed to promote transcriptional and, ultimately, physiological dysfunction via both cell-intrinsic and cell-non-autonomous pathways. Studying the consequences of DSBs in higher organisms has, however, been hindered by a scarcity of tools for controlled DSB induction. Here, we describe a mouse model that allows for both tissue-specific and temporally controlled DSB formation at ∼140 defined genomic loci. Using this model, we show that DSBs promote a DNA damage signaling-dependent decrease in gene expression in primary cells specifically at break-bearing genes, which is reversed upon DSB repair. Importantly, we demonstrate that restoration of gene expression can occur independently of cell cycle progression, underlining its relevance for normal tissue maintenance. Consistent with this, we observe no evidence for persistent transcriptional repression in response to a multi-day course of continuous DSB formation and repair in mouse lymphocytes in vivo Together, our findings reveal an unexpected capacity of primary cells to maintain transcriptome integrity in response to DSBs, pointing to a limited role for DNA damage as a mediator of cell-autonomous epigenetic dysfunction. |
doi_str_mv | 10.1093/nar/gkv1482 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4838352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1787977205</sourcerecordid><originalsourceid>FETCH-LOGICAL-p229t-a7ea9d3cbbb8074d4fe6ce19ed301aa7469e83c5a5763aba3f26dc27ba693a4a3</originalsourceid><addsrcrecordid>eNqNkc1v1DAQxS1ERZfCiXvlI5dQf8WOL5WqLR-VqnKBcxjbs4vbJE5tZ6X-96SioHLjNCPNb57emyHkHWcfOLPybIJ8tr87cNWJF2TDpRaNslq8JBsmWdtwprpj8rqUW8a44q16RY6F1p0xgm3Ij22aak7DgIFe3lzQkBY3YFNqhilQlxHuaJzC4mtM09rRMXqkGQ8IQ6FzKrUJMMIe6eNG8TnONY1ISwUXh1gf3pCj3Yri26d6Qr5_-vht-6W5_vr5antx3cxC2NqAQbBBeudcx4wKaofaI7cYJOMARmmLnfQttEZLcCB3QgcvjANtJSiQJ-T8t-68uBGDxzUWDP2c4wj5oU8Q-38nU_zZ79OhV53sZCtWgfdPAjndL1hqP8bicRhgwrSUnpvO2Mejtf-DSsuFaO2Knj639dfPnw_IX1wyi3w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1783912259</pqid></control><display><type>article</type><title>Controlled DNA double-strand break induction in mice reveals post-damage transcriptome stability</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, Jeongkyu ; Sturgill, David ; Tran, Andy D ; Sinclair, David A ; Oberdoerffer, Philipp</creator><creatorcontrib>Kim, Jeongkyu ; Sturgill, David ; Tran, Andy D ; Sinclair, David A ; Oberdoerffer, Philipp</creatorcontrib><description>DNA double-strand breaks (DSBs) and their repair can cause extensive epigenetic changes. As a result, DSBs have been proposed to promote transcriptional and, ultimately, physiological dysfunction via both cell-intrinsic and cell-non-autonomous pathways. Studying the consequences of DSBs in higher organisms has, however, been hindered by a scarcity of tools for controlled DSB induction. Here, we describe a mouse model that allows for both tissue-specific and temporally controlled DSB formation at ∼140 defined genomic loci. Using this model, we show that DSBs promote a DNA damage signaling-dependent decrease in gene expression in primary cells specifically at break-bearing genes, which is reversed upon DSB repair. Importantly, we demonstrate that restoration of gene expression can occur independently of cell cycle progression, underlining its relevance for normal tissue maintenance. Consistent with this, we observe no evidence for persistent transcriptional repression in response to a multi-day course of continuous DSB formation and repair in mouse lymphocytes in vivo Together, our findings reveal an unexpected capacity of primary cells to maintain transcriptome integrity in response to DSBs, pointing to a limited role for DNA damage as a mediator of cell-autonomous epigenetic dysfunction.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkv1482</identifier><identifier>PMID: 26687720</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Cells, Cultured ; DNA Breaks, Double-Stranded ; Endodeoxyribonucleases ; Genetic Loci ; Methods Online ; Mice ; Mice, Transgenic ; Signal Transduction ; Transcriptome</subject><ispartof>Nucleic acids research, 2016-04, Vol.44 (7), p.e64-e64</ispartof><rights>Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.</rights><rights>Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838352/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838352/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26687720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Jeongkyu</creatorcontrib><creatorcontrib>Sturgill, David</creatorcontrib><creatorcontrib>Tran, Andy D</creatorcontrib><creatorcontrib>Sinclair, David A</creatorcontrib><creatorcontrib>Oberdoerffer, Philipp</creatorcontrib><title>Controlled DNA double-strand break induction in mice reveals post-damage transcriptome stability</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>DNA double-strand breaks (DSBs) and their repair can cause extensive epigenetic changes. As a result, DSBs have been proposed to promote transcriptional and, ultimately, physiological dysfunction via both cell-intrinsic and cell-non-autonomous pathways. Studying the consequences of DSBs in higher organisms has, however, been hindered by a scarcity of tools for controlled DSB induction. Here, we describe a mouse model that allows for both tissue-specific and temporally controlled DSB formation at ∼140 defined genomic loci. Using this model, we show that DSBs promote a DNA damage signaling-dependent decrease in gene expression in primary cells specifically at break-bearing genes, which is reversed upon DSB repair. Importantly, we demonstrate that restoration of gene expression can occur independently of cell cycle progression, underlining its relevance for normal tissue maintenance. Consistent with this, we observe no evidence for persistent transcriptional repression in response to a multi-day course of continuous DSB formation and repair in mouse lymphocytes in vivo Together, our findings reveal an unexpected capacity of primary cells to maintain transcriptome integrity in response to DSBs, pointing to a limited role for DNA damage as a mediator of cell-autonomous epigenetic dysfunction.</description><subject>Animals</subject><subject>Cells, Cultured</subject><subject>DNA Breaks, Double-Stranded</subject><subject>Endodeoxyribonucleases</subject><subject>Genetic Loci</subject><subject>Methods Online</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Signal Transduction</subject><subject>Transcriptome</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1v1DAQxS1ERZfCiXvlI5dQf8WOL5WqLR-VqnKBcxjbs4vbJE5tZ6X-96SioHLjNCPNb57emyHkHWcfOLPybIJ8tr87cNWJF2TDpRaNslq8JBsmWdtwprpj8rqUW8a44q16RY6F1p0xgm3Ij22aak7DgIFe3lzQkBY3YFNqhilQlxHuaJzC4mtM09rRMXqkGQ8IQ6FzKrUJMMIe6eNG8TnONY1ISwUXh1gf3pCj3Yri26d6Qr5_-vht-6W5_vr5antx3cxC2NqAQbBBeudcx4wKaofaI7cYJOMARmmLnfQttEZLcCB3QgcvjANtJSiQJ-T8t-68uBGDxzUWDP2c4wj5oU8Q-38nU_zZ79OhV53sZCtWgfdPAjndL1hqP8bicRhgwrSUnpvO2Mejtf-DSsuFaO2Knj639dfPnw_IX1wyi3w</recordid><startdate>20160420</startdate><enddate>20160420</enddate><creator>Kim, Jeongkyu</creator><creator>Sturgill, David</creator><creator>Tran, Andy D</creator><creator>Sinclair, David A</creator><creator>Oberdoerffer, Philipp</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20160420</creationdate><title>Controlled DNA double-strand break induction in mice reveals post-damage transcriptome stability</title><author>Kim, Jeongkyu ; Sturgill, David ; Tran, Andy D ; Sinclair, David A ; Oberdoerffer, Philipp</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p229t-a7ea9d3cbbb8074d4fe6ce19ed301aa7469e83c5a5763aba3f26dc27ba693a4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Cells, Cultured</topic><topic>DNA Breaks, Double-Stranded</topic><topic>Endodeoxyribonucleases</topic><topic>Genetic Loci</topic><topic>Methods Online</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Signal Transduction</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jeongkyu</creatorcontrib><creatorcontrib>Sturgill, David</creatorcontrib><creatorcontrib>Tran, Andy D</creatorcontrib><creatorcontrib>Sinclair, David A</creatorcontrib><creatorcontrib>Oberdoerffer, Philipp</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jeongkyu</au><au>Sturgill, David</au><au>Tran, Andy D</au><au>Sinclair, David A</au><au>Oberdoerffer, Philipp</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled DNA double-strand break induction in mice reveals post-damage transcriptome stability</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2016-04-20</date><risdate>2016</risdate><volume>44</volume><issue>7</issue><spage>e64</spage><epage>e64</epage><pages>e64-e64</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>DNA double-strand breaks (DSBs) and their repair can cause extensive epigenetic changes. As a result, DSBs have been proposed to promote transcriptional and, ultimately, physiological dysfunction via both cell-intrinsic and cell-non-autonomous pathways. Studying the consequences of DSBs in higher organisms has, however, been hindered by a scarcity of tools for controlled DSB induction. Here, we describe a mouse model that allows for both tissue-specific and temporally controlled DSB formation at ∼140 defined genomic loci. Using this model, we show that DSBs promote a DNA damage signaling-dependent decrease in gene expression in primary cells specifically at break-bearing genes, which is reversed upon DSB repair. Importantly, we demonstrate that restoration of gene expression can occur independently of cell cycle progression, underlining its relevance for normal tissue maintenance. Consistent with this, we observe no evidence for persistent transcriptional repression in response to a multi-day course of continuous DSB formation and repair in mouse lymphocytes in vivo Together, our findings reveal an unexpected capacity of primary cells to maintain transcriptome integrity in response to DSBs, pointing to a limited role for DNA damage as a mediator of cell-autonomous epigenetic dysfunction.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>26687720</pmid><doi>10.1093/nar/gkv1482</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2016-04, Vol.44 (7), p.e64-e64 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4838352 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Cells, Cultured DNA Breaks, Double-Stranded Endodeoxyribonucleases Genetic Loci Methods Online Mice Mice, Transgenic Signal Transduction Transcriptome |
title | Controlled DNA double-strand break induction in mice reveals post-damage transcriptome stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20DNA%20double-strand%20break%20induction%20in%20mice%20reveals%20post-damage%20transcriptome%20stability&rft.jtitle=Nucleic%20acids%20research&rft.au=Kim,%20Jeongkyu&rft.date=2016-04-20&rft.volume=44&rft.issue=7&rft.spage=e64&rft.epage=e64&rft.pages=e64-e64&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkv1482&rft_dat=%3Cproquest_pubme%3E1787977205%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1783912259&rft_id=info:pmid/26687720&rfr_iscdi=true |