Controlled DNA double-strand break induction in mice reveals post-damage transcriptome stability

DNA double-strand breaks (DSBs) and their repair can cause extensive epigenetic changes. As a result, DSBs have been proposed to promote transcriptional and, ultimately, physiological dysfunction via both cell-intrinsic and cell-non-autonomous pathways. Studying the consequences of DSBs in higher or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2016-04, Vol.44 (7), p.e64-e64
Hauptverfasser: Kim, Jeongkyu, Sturgill, David, Tran, Andy D, Sinclair, David A, Oberdoerffer, Philipp
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e64
container_issue 7
container_start_page e64
container_title Nucleic acids research
container_volume 44
creator Kim, Jeongkyu
Sturgill, David
Tran, Andy D
Sinclair, David A
Oberdoerffer, Philipp
description DNA double-strand breaks (DSBs) and their repair can cause extensive epigenetic changes. As a result, DSBs have been proposed to promote transcriptional and, ultimately, physiological dysfunction via both cell-intrinsic and cell-non-autonomous pathways. Studying the consequences of DSBs in higher organisms has, however, been hindered by a scarcity of tools for controlled DSB induction. Here, we describe a mouse model that allows for both tissue-specific and temporally controlled DSB formation at ∼140 defined genomic loci. Using this model, we show that DSBs promote a DNA damage signaling-dependent decrease in gene expression in primary cells specifically at break-bearing genes, which is reversed upon DSB repair. Importantly, we demonstrate that restoration of gene expression can occur independently of cell cycle progression, underlining its relevance for normal tissue maintenance. Consistent with this, we observe no evidence for persistent transcriptional repression in response to a multi-day course of continuous DSB formation and repair in mouse lymphocytes in vivo Together, our findings reveal an unexpected capacity of primary cells to maintain transcriptome integrity in response to DSBs, pointing to a limited role for DNA damage as a mediator of cell-autonomous epigenetic dysfunction.
doi_str_mv 10.1093/nar/gkv1482
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4838352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1787977205</sourcerecordid><originalsourceid>FETCH-LOGICAL-p229t-a7ea9d3cbbb8074d4fe6ce19ed301aa7469e83c5a5763aba3f26dc27ba693a4a3</originalsourceid><addsrcrecordid>eNqNkc1v1DAQxS1ERZfCiXvlI5dQf8WOL5WqLR-VqnKBcxjbs4vbJE5tZ6X-96SioHLjNCPNb57emyHkHWcfOLPybIJ8tr87cNWJF2TDpRaNslq8JBsmWdtwprpj8rqUW8a44q16RY6F1p0xgm3Ij22aak7DgIFe3lzQkBY3YFNqhilQlxHuaJzC4mtM09rRMXqkGQ8IQ6FzKrUJMMIe6eNG8TnONY1ISwUXh1gf3pCj3Yri26d6Qr5_-vht-6W5_vr5antx3cxC2NqAQbBBeudcx4wKaofaI7cYJOMARmmLnfQttEZLcCB3QgcvjANtJSiQJ-T8t-68uBGDxzUWDP2c4wj5oU8Q-38nU_zZ79OhV53sZCtWgfdPAjndL1hqP8bicRhgwrSUnpvO2Mejtf-DSsuFaO2Knj639dfPnw_IX1wyi3w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1783912259</pqid></control><display><type>article</type><title>Controlled DNA double-strand break induction in mice reveals post-damage transcriptome stability</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, Jeongkyu ; Sturgill, David ; Tran, Andy D ; Sinclair, David A ; Oberdoerffer, Philipp</creator><creatorcontrib>Kim, Jeongkyu ; Sturgill, David ; Tran, Andy D ; Sinclair, David A ; Oberdoerffer, Philipp</creatorcontrib><description>DNA double-strand breaks (DSBs) and their repair can cause extensive epigenetic changes. As a result, DSBs have been proposed to promote transcriptional and, ultimately, physiological dysfunction via both cell-intrinsic and cell-non-autonomous pathways. Studying the consequences of DSBs in higher organisms has, however, been hindered by a scarcity of tools for controlled DSB induction. Here, we describe a mouse model that allows for both tissue-specific and temporally controlled DSB formation at ∼140 defined genomic loci. Using this model, we show that DSBs promote a DNA damage signaling-dependent decrease in gene expression in primary cells specifically at break-bearing genes, which is reversed upon DSB repair. Importantly, we demonstrate that restoration of gene expression can occur independently of cell cycle progression, underlining its relevance for normal tissue maintenance. Consistent with this, we observe no evidence for persistent transcriptional repression in response to a multi-day course of continuous DSB formation and repair in mouse lymphocytes in vivo Together, our findings reveal an unexpected capacity of primary cells to maintain transcriptome integrity in response to DSBs, pointing to a limited role for DNA damage as a mediator of cell-autonomous epigenetic dysfunction.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkv1482</identifier><identifier>PMID: 26687720</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Cells, Cultured ; DNA Breaks, Double-Stranded ; Endodeoxyribonucleases ; Genetic Loci ; Methods Online ; Mice ; Mice, Transgenic ; Signal Transduction ; Transcriptome</subject><ispartof>Nucleic acids research, 2016-04, Vol.44 (7), p.e64-e64</ispartof><rights>Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.</rights><rights>Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838352/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838352/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26687720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Jeongkyu</creatorcontrib><creatorcontrib>Sturgill, David</creatorcontrib><creatorcontrib>Tran, Andy D</creatorcontrib><creatorcontrib>Sinclair, David A</creatorcontrib><creatorcontrib>Oberdoerffer, Philipp</creatorcontrib><title>Controlled DNA double-strand break induction in mice reveals post-damage transcriptome stability</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>DNA double-strand breaks (DSBs) and their repair can cause extensive epigenetic changes. As a result, DSBs have been proposed to promote transcriptional and, ultimately, physiological dysfunction via both cell-intrinsic and cell-non-autonomous pathways. Studying the consequences of DSBs in higher organisms has, however, been hindered by a scarcity of tools for controlled DSB induction. Here, we describe a mouse model that allows for both tissue-specific and temporally controlled DSB formation at ∼140 defined genomic loci. Using this model, we show that DSBs promote a DNA damage signaling-dependent decrease in gene expression in primary cells specifically at break-bearing genes, which is reversed upon DSB repair. Importantly, we demonstrate that restoration of gene expression can occur independently of cell cycle progression, underlining its relevance for normal tissue maintenance. Consistent with this, we observe no evidence for persistent transcriptional repression in response to a multi-day course of continuous DSB formation and repair in mouse lymphocytes in vivo Together, our findings reveal an unexpected capacity of primary cells to maintain transcriptome integrity in response to DSBs, pointing to a limited role for DNA damage as a mediator of cell-autonomous epigenetic dysfunction.</description><subject>Animals</subject><subject>Cells, Cultured</subject><subject>DNA Breaks, Double-Stranded</subject><subject>Endodeoxyribonucleases</subject><subject>Genetic Loci</subject><subject>Methods Online</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Signal Transduction</subject><subject>Transcriptome</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1v1DAQxS1ERZfCiXvlI5dQf8WOL5WqLR-VqnKBcxjbs4vbJE5tZ6X-96SioHLjNCPNb57emyHkHWcfOLPybIJ8tr87cNWJF2TDpRaNslq8JBsmWdtwprpj8rqUW8a44q16RY6F1p0xgm3Ij22aak7DgIFe3lzQkBY3YFNqhilQlxHuaJzC4mtM09rRMXqkGQ8IQ6FzKrUJMMIe6eNG8TnONY1ISwUXh1gf3pCj3Yri26d6Qr5_-vht-6W5_vr5antx3cxC2NqAQbBBeudcx4wKaofaI7cYJOMARmmLnfQttEZLcCB3QgcvjANtJSiQJ-T8t-68uBGDxzUWDP2c4wj5oU8Q-38nU_zZ79OhV53sZCtWgfdPAjndL1hqP8bicRhgwrSUnpvO2Mejtf-DSsuFaO2Knj639dfPnw_IX1wyi3w</recordid><startdate>20160420</startdate><enddate>20160420</enddate><creator>Kim, Jeongkyu</creator><creator>Sturgill, David</creator><creator>Tran, Andy D</creator><creator>Sinclair, David A</creator><creator>Oberdoerffer, Philipp</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20160420</creationdate><title>Controlled DNA double-strand break induction in mice reveals post-damage transcriptome stability</title><author>Kim, Jeongkyu ; Sturgill, David ; Tran, Andy D ; Sinclair, David A ; Oberdoerffer, Philipp</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p229t-a7ea9d3cbbb8074d4fe6ce19ed301aa7469e83c5a5763aba3f26dc27ba693a4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Cells, Cultured</topic><topic>DNA Breaks, Double-Stranded</topic><topic>Endodeoxyribonucleases</topic><topic>Genetic Loci</topic><topic>Methods Online</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Signal Transduction</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jeongkyu</creatorcontrib><creatorcontrib>Sturgill, David</creatorcontrib><creatorcontrib>Tran, Andy D</creatorcontrib><creatorcontrib>Sinclair, David A</creatorcontrib><creatorcontrib>Oberdoerffer, Philipp</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jeongkyu</au><au>Sturgill, David</au><au>Tran, Andy D</au><au>Sinclair, David A</au><au>Oberdoerffer, Philipp</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled DNA double-strand break induction in mice reveals post-damage transcriptome stability</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2016-04-20</date><risdate>2016</risdate><volume>44</volume><issue>7</issue><spage>e64</spage><epage>e64</epage><pages>e64-e64</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>DNA double-strand breaks (DSBs) and their repair can cause extensive epigenetic changes. As a result, DSBs have been proposed to promote transcriptional and, ultimately, physiological dysfunction via both cell-intrinsic and cell-non-autonomous pathways. Studying the consequences of DSBs in higher organisms has, however, been hindered by a scarcity of tools for controlled DSB induction. Here, we describe a mouse model that allows for both tissue-specific and temporally controlled DSB formation at ∼140 defined genomic loci. Using this model, we show that DSBs promote a DNA damage signaling-dependent decrease in gene expression in primary cells specifically at break-bearing genes, which is reversed upon DSB repair. Importantly, we demonstrate that restoration of gene expression can occur independently of cell cycle progression, underlining its relevance for normal tissue maintenance. Consistent with this, we observe no evidence for persistent transcriptional repression in response to a multi-day course of continuous DSB formation and repair in mouse lymphocytes in vivo Together, our findings reveal an unexpected capacity of primary cells to maintain transcriptome integrity in response to DSBs, pointing to a limited role for DNA damage as a mediator of cell-autonomous epigenetic dysfunction.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>26687720</pmid><doi>10.1093/nar/gkv1482</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2016-04, Vol.44 (7), p.e64-e64
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4838352
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Cells, Cultured
DNA Breaks, Double-Stranded
Endodeoxyribonucleases
Genetic Loci
Methods Online
Mice
Mice, Transgenic
Signal Transduction
Transcriptome
title Controlled DNA double-strand break induction in mice reveals post-damage transcriptome stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20DNA%20double-strand%20break%20induction%20in%20mice%20reveals%20post-damage%20transcriptome%20stability&rft.jtitle=Nucleic%20acids%20research&rft.au=Kim,%20Jeongkyu&rft.date=2016-04-20&rft.volume=44&rft.issue=7&rft.spage=e64&rft.epage=e64&rft.pages=e64-e64&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkv1482&rft_dat=%3Cproquest_pubme%3E1787977205%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1783912259&rft_id=info:pmid/26687720&rfr_iscdi=true