Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability

Drag reduction has become a serious issue in recent years in terms of energy conservation and environmental protection. Among diverse approaches for drag reduction, superhydrophobic surfaces have been mainly researched due to their high drag reducing efficiency. However, due to limited lifetime of p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-04, Vol.6 (1), p.24653-24653, Article 24653
Hauptverfasser: Lee, By Junghan, Zhang, Zhuo, Baek, Seunghyun, Kim, Sangkuk, Kim, Donghyung, Yong, Kijung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24653
container_issue 1
container_start_page 24653
container_title Scientific reports
container_volume 6
creator Lee, By Junghan
Zhang, Zhuo
Baek, Seunghyun
Kim, Sangkuk
Kim, Donghyung
Yong, Kijung
description Drag reduction has become a serious issue in recent years in terms of energy conservation and environmental protection. Among diverse approaches for drag reduction, superhydrophobic surfaces have been mainly researched due to their high drag reducing efficiency. However, due to limited lifetime of plastron (i.e., air pockets) on superhydrophobic surfaces in underwater, the instability of dewetted surfaces has been a sticking point for practical applications. This work presents a breakthrough in improving the underwater stability of superhydrophobic surfaces by optimizing nanoscale surface structures using SiC/Si interlocked structures. These structures have an unequaled stability of underwater superhydrophobicity and enhance drag reduction capabilities,with a lifetime of plastron over 18 days and maximum velocity reduction ratio of 56%. Furthermore, through photoelectrochemical water splitting on a hierarchical SiC/Si nanostructure surface, the limited lifetime problem of air pockets was overcome by refilling the escaping gas layer, which also provides continuous drag reduction effects.
doi_str_mv 10.1038/srep24653
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4837397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898676493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-502bd8c1f8defc17f5b3788d92954128341897a037441bc55fd68579977c7653</originalsourceid><addsrcrecordid>eNplkc1u1DAUhSMEolXpghdAkdhApVD_xvYGqYzKj1SJRbu3HPtm6pKxg-206mvwxLiaYTSAN772_XTusU_TvMboA0ZUnucEM2E9p8-aY4IY7wgl5PlBfdSc5nyH6uJEMaxeNkdEIMV7wY6bX5987HzIs0_gWgcPUEot8pJGYyG3g8n1GEN77Vfn1771oUCaov3xBJW02LKkio0xtRBuTbDguiU4SA-mghUxg598eWxNcG2CNQRIpvh76Fwy63rjqoSv-tbMO_RV82I0U4bT3X7S3Hy-vFl97a6-f_m2urjqLKOydByRwUmLR-lgtFiMfKBCSqeI4gwTSRmWShhEBWN4sJyPrpdcKCWEFfW7TpqPW9l5GTbgLISSzKTn5DcmPepovP67E_ytXsd7zSQVVIkq8G4nkOLPBXLRG58tTJMJEJessZCUMiR7WdG3_6B3cUmhvk5Xk7IXPVO0Uu-3lE0x11jHvRmM9FPWep91Zd8cut-Tf5KtwNkWyLUV1pAORv6n9hu31bZR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898676493</pqid></control><display><type>article</type><title>Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Lee, By Junghan ; Zhang, Zhuo ; Baek, Seunghyun ; Kim, Sangkuk ; Kim, Donghyung ; Yong, Kijung</creator><creatorcontrib>Lee, By Junghan ; Zhang, Zhuo ; Baek, Seunghyun ; Kim, Sangkuk ; Kim, Donghyung ; Yong, Kijung</creatorcontrib><description>Drag reduction has become a serious issue in recent years in terms of energy conservation and environmental protection. Among diverse approaches for drag reduction, superhydrophobic surfaces have been mainly researched due to their high drag reducing efficiency. However, due to limited lifetime of plastron (i.e., air pockets) on superhydrophobic surfaces in underwater, the instability of dewetted surfaces has been a sticking point for practical applications. This work presents a breakthrough in improving the underwater stability of superhydrophobic surfaces by optimizing nanoscale surface structures using SiC/Si interlocked structures. These structures have an unequaled stability of underwater superhydrophobicity and enhance drag reduction capabilities,with a lifetime of plastron over 18 days and maximum velocity reduction ratio of 56%. Furthermore, through photoelectrochemical water splitting on a hierarchical SiC/Si nanostructure surface, the limited lifetime problem of air pockets was overcome by refilling the escaping gas layer, which also provides continuous drag reduction effects.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep24653</identifier><identifier>PMID: 27095674</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/925/357/1016 ; 639/925/929/170 ; Energy conservation ; Environmental protection ; Humanities and Social Sciences ; Hydrophobic surfaces ; multidisciplinary ; Projects ; Science ; Splitting ; Trailers ; Underwater ; Velocity</subject><ispartof>Scientific reports, 2016-04, Vol.6 (1), p.24653-24653, Article 24653</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Apr 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-502bd8c1f8defc17f5b3788d92954128341897a037441bc55fd68579977c7653</citedby><cites>FETCH-LOGICAL-c438t-502bd8c1f8defc17f5b3788d92954128341897a037441bc55fd68579977c7653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4837397/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4837397/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27095674$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, By Junghan</creatorcontrib><creatorcontrib>Zhang, Zhuo</creatorcontrib><creatorcontrib>Baek, Seunghyun</creatorcontrib><creatorcontrib>Kim, Sangkuk</creatorcontrib><creatorcontrib>Kim, Donghyung</creatorcontrib><creatorcontrib>Yong, Kijung</creatorcontrib><title>Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Drag reduction has become a serious issue in recent years in terms of energy conservation and environmental protection. Among diverse approaches for drag reduction, superhydrophobic surfaces have been mainly researched due to their high drag reducing efficiency. However, due to limited lifetime of plastron (i.e., air pockets) on superhydrophobic surfaces in underwater, the instability of dewetted surfaces has been a sticking point for practical applications. This work presents a breakthrough in improving the underwater stability of superhydrophobic surfaces by optimizing nanoscale surface structures using SiC/Si interlocked structures. These structures have an unequaled stability of underwater superhydrophobicity and enhance drag reduction capabilities,with a lifetime of plastron over 18 days and maximum velocity reduction ratio of 56%. Furthermore, through photoelectrochemical water splitting on a hierarchical SiC/Si nanostructure surface, the limited lifetime problem of air pockets was overcome by refilling the escaping gas layer, which also provides continuous drag reduction effects.</description><subject>639/925/357/1016</subject><subject>639/925/929/170</subject><subject>Energy conservation</subject><subject>Environmental protection</subject><subject>Humanities and Social Sciences</subject><subject>Hydrophobic surfaces</subject><subject>multidisciplinary</subject><subject>Projects</subject><subject>Science</subject><subject>Splitting</subject><subject>Trailers</subject><subject>Underwater</subject><subject>Velocity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkc1u1DAUhSMEolXpghdAkdhApVD_xvYGqYzKj1SJRbu3HPtm6pKxg-206mvwxLiaYTSAN772_XTusU_TvMboA0ZUnucEM2E9p8-aY4IY7wgl5PlBfdSc5nyH6uJEMaxeNkdEIMV7wY6bX5987HzIs0_gWgcPUEot8pJGYyG3g8n1GEN77Vfn1771oUCaov3xBJW02LKkio0xtRBuTbDguiU4SA-mghUxg598eWxNcG2CNQRIpvh76Fwy63rjqoSv-tbMO_RV82I0U4bT3X7S3Hy-vFl97a6-f_m2urjqLKOydByRwUmLR-lgtFiMfKBCSqeI4gwTSRmWShhEBWN4sJyPrpdcKCWEFfW7TpqPW9l5GTbgLISSzKTn5DcmPepovP67E_ytXsd7zSQVVIkq8G4nkOLPBXLRG58tTJMJEJessZCUMiR7WdG3_6B3cUmhvk5Xk7IXPVO0Uu-3lE0x11jHvRmM9FPWep91Zd8cut-Tf5KtwNkWyLUV1pAORv6n9hu31bZR</recordid><startdate>20160420</startdate><enddate>20160420</enddate><creator>Lee, By Junghan</creator><creator>Zhang, Zhuo</creator><creator>Baek, Seunghyun</creator><creator>Kim, Sangkuk</creator><creator>Kim, Donghyung</creator><creator>Yong, Kijung</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160420</creationdate><title>Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability</title><author>Lee, By Junghan ; Zhang, Zhuo ; Baek, Seunghyun ; Kim, Sangkuk ; Kim, Donghyung ; Yong, Kijung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-502bd8c1f8defc17f5b3788d92954128341897a037441bc55fd68579977c7653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/925/357/1016</topic><topic>639/925/929/170</topic><topic>Energy conservation</topic><topic>Environmental protection</topic><topic>Humanities and Social Sciences</topic><topic>Hydrophobic surfaces</topic><topic>multidisciplinary</topic><topic>Projects</topic><topic>Science</topic><topic>Splitting</topic><topic>Trailers</topic><topic>Underwater</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, By Junghan</creatorcontrib><creatorcontrib>Zhang, Zhuo</creatorcontrib><creatorcontrib>Baek, Seunghyun</creatorcontrib><creatorcontrib>Kim, Sangkuk</creatorcontrib><creatorcontrib>Kim, Donghyung</creatorcontrib><creatorcontrib>Yong, Kijung</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, By Junghan</au><au>Zhang, Zhuo</au><au>Baek, Seunghyun</au><au>Kim, Sangkuk</au><au>Kim, Donghyung</au><au>Yong, Kijung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-04-20</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>24653</spage><epage>24653</epage><pages>24653-24653</pages><artnum>24653</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Drag reduction has become a serious issue in recent years in terms of energy conservation and environmental protection. Among diverse approaches for drag reduction, superhydrophobic surfaces have been mainly researched due to their high drag reducing efficiency. However, due to limited lifetime of plastron (i.e., air pockets) on superhydrophobic surfaces in underwater, the instability of dewetted surfaces has been a sticking point for practical applications. This work presents a breakthrough in improving the underwater stability of superhydrophobic surfaces by optimizing nanoscale surface structures using SiC/Si interlocked structures. These structures have an unequaled stability of underwater superhydrophobicity and enhance drag reduction capabilities,with a lifetime of plastron over 18 days and maximum velocity reduction ratio of 56%. Furthermore, through photoelectrochemical water splitting on a hierarchical SiC/Si nanostructure surface, the limited lifetime problem of air pockets was overcome by refilling the escaping gas layer, which also provides continuous drag reduction effects.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27095674</pmid><doi>10.1038/srep24653</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-04, Vol.6 (1), p.24653-24653, Article 24653
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4837397
source Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 639/925/357/1016
639/925/929/170
Energy conservation
Environmental protection
Humanities and Social Sciences
Hydrophobic surfaces
multidisciplinary
Projects
Science
Splitting
Trailers
Underwater
Velocity
title Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A05%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-inspired%20dewetted%20surfaces%20based%20on%20SiC/Si%20interlocked%20structures%20for%20enhanced-underwater%20stability%20and%20regenerative-drag%20reduction%20capability&rft.jtitle=Scientific%20reports&rft.au=Lee,%20By%20Junghan&rft.date=2016-04-20&rft.volume=6&rft.issue=1&rft.spage=24653&rft.epage=24653&rft.pages=24653-24653&rft.artnum=24653&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep24653&rft_dat=%3Cproquest_pubme%3E1898676493%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898676493&rft_id=info:pmid/27095674&rfr_iscdi=true