Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability
Drag reduction has become a serious issue in recent years in terms of energy conservation and environmental protection. Among diverse approaches for drag reduction, superhydrophobic surfaces have been mainly researched due to their high drag reducing efficiency. However, due to limited lifetime of p...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-04, Vol.6 (1), p.24653-24653, Article 24653 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24653 |
---|---|
container_issue | 1 |
container_start_page | 24653 |
container_title | Scientific reports |
container_volume | 6 |
creator | Lee, By Junghan Zhang, Zhuo Baek, Seunghyun Kim, Sangkuk Kim, Donghyung Yong, Kijung |
description | Drag reduction has become a serious issue in recent years in terms of energy conservation and environmental protection. Among diverse approaches for drag reduction, superhydrophobic surfaces have been mainly researched due to their high drag reducing efficiency. However, due to limited lifetime of plastron (i.e., air pockets) on superhydrophobic surfaces in underwater, the instability of dewetted surfaces has been a sticking point for practical applications. This work presents a breakthrough in improving the underwater stability of superhydrophobic surfaces by optimizing nanoscale surface structures using SiC/Si interlocked structures. These structures have an unequaled stability of underwater superhydrophobicity and enhance drag reduction capabilities,with a lifetime of plastron over 18 days and maximum velocity reduction ratio of 56%. Furthermore, through photoelectrochemical water splitting on a hierarchical SiC/Si nanostructure surface, the limited lifetime problem of air pockets was overcome by refilling the escaping gas layer, which also provides continuous drag reduction effects. |
doi_str_mv | 10.1038/srep24653 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4837397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898676493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-502bd8c1f8defc17f5b3788d92954128341897a037441bc55fd68579977c7653</originalsourceid><addsrcrecordid>eNplkc1u1DAUhSMEolXpghdAkdhApVD_xvYGqYzKj1SJRbu3HPtm6pKxg-206mvwxLiaYTSAN772_XTusU_TvMboA0ZUnucEM2E9p8-aY4IY7wgl5PlBfdSc5nyH6uJEMaxeNkdEIMV7wY6bX5987HzIs0_gWgcPUEot8pJGYyG3g8n1GEN77Vfn1771oUCaov3xBJW02LKkio0xtRBuTbDguiU4SA-mghUxg598eWxNcG2CNQRIpvh76Fwy63rjqoSv-tbMO_RV82I0U4bT3X7S3Hy-vFl97a6-f_m2urjqLKOydByRwUmLR-lgtFiMfKBCSqeI4gwTSRmWShhEBWN4sJyPrpdcKCWEFfW7TpqPW9l5GTbgLISSzKTn5DcmPepovP67E_ytXsd7zSQVVIkq8G4nkOLPBXLRG58tTJMJEJessZCUMiR7WdG3_6B3cUmhvk5Xk7IXPVO0Uu-3lE0x11jHvRmM9FPWep91Zd8cut-Tf5KtwNkWyLUV1pAORv6n9hu31bZR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898676493</pqid></control><display><type>article</type><title>Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Lee, By Junghan ; Zhang, Zhuo ; Baek, Seunghyun ; Kim, Sangkuk ; Kim, Donghyung ; Yong, Kijung</creator><creatorcontrib>Lee, By Junghan ; Zhang, Zhuo ; Baek, Seunghyun ; Kim, Sangkuk ; Kim, Donghyung ; Yong, Kijung</creatorcontrib><description>Drag reduction has become a serious issue in recent years in terms of energy conservation and environmental protection. Among diverse approaches for drag reduction, superhydrophobic surfaces have been mainly researched due to their high drag reducing efficiency. However, due to limited lifetime of plastron (i.e., air pockets) on superhydrophobic surfaces in underwater, the instability of dewetted surfaces has been a sticking point for practical applications. This work presents a breakthrough in improving the underwater stability of superhydrophobic surfaces by optimizing nanoscale surface structures using SiC/Si interlocked structures. These structures have an unequaled stability of underwater superhydrophobicity and enhance drag reduction capabilities,with a lifetime of plastron over 18 days and maximum velocity reduction ratio of 56%. Furthermore, through photoelectrochemical water splitting on a hierarchical SiC/Si nanostructure surface, the limited lifetime problem of air pockets was overcome by refilling the escaping gas layer, which also provides continuous drag reduction effects.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep24653</identifier><identifier>PMID: 27095674</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/925/357/1016 ; 639/925/929/170 ; Energy conservation ; Environmental protection ; Humanities and Social Sciences ; Hydrophobic surfaces ; multidisciplinary ; Projects ; Science ; Splitting ; Trailers ; Underwater ; Velocity</subject><ispartof>Scientific reports, 2016-04, Vol.6 (1), p.24653-24653, Article 24653</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Apr 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-502bd8c1f8defc17f5b3788d92954128341897a037441bc55fd68579977c7653</citedby><cites>FETCH-LOGICAL-c438t-502bd8c1f8defc17f5b3788d92954128341897a037441bc55fd68579977c7653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4837397/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4837397/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27095674$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, By Junghan</creatorcontrib><creatorcontrib>Zhang, Zhuo</creatorcontrib><creatorcontrib>Baek, Seunghyun</creatorcontrib><creatorcontrib>Kim, Sangkuk</creatorcontrib><creatorcontrib>Kim, Donghyung</creatorcontrib><creatorcontrib>Yong, Kijung</creatorcontrib><title>Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Drag reduction has become a serious issue in recent years in terms of energy conservation and environmental protection. Among diverse approaches for drag reduction, superhydrophobic surfaces have been mainly researched due to their high drag reducing efficiency. However, due to limited lifetime of plastron (i.e., air pockets) on superhydrophobic surfaces in underwater, the instability of dewetted surfaces has been a sticking point for practical applications. This work presents a breakthrough in improving the underwater stability of superhydrophobic surfaces by optimizing nanoscale surface structures using SiC/Si interlocked structures. These structures have an unequaled stability of underwater superhydrophobicity and enhance drag reduction capabilities,with a lifetime of plastron over 18 days and maximum velocity reduction ratio of 56%. Furthermore, through photoelectrochemical water splitting on a hierarchical SiC/Si nanostructure surface, the limited lifetime problem of air pockets was overcome by refilling the escaping gas layer, which also provides continuous drag reduction effects.</description><subject>639/925/357/1016</subject><subject>639/925/929/170</subject><subject>Energy conservation</subject><subject>Environmental protection</subject><subject>Humanities and Social Sciences</subject><subject>Hydrophobic surfaces</subject><subject>multidisciplinary</subject><subject>Projects</subject><subject>Science</subject><subject>Splitting</subject><subject>Trailers</subject><subject>Underwater</subject><subject>Velocity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkc1u1DAUhSMEolXpghdAkdhApVD_xvYGqYzKj1SJRbu3HPtm6pKxg-206mvwxLiaYTSAN772_XTusU_TvMboA0ZUnucEM2E9p8-aY4IY7wgl5PlBfdSc5nyH6uJEMaxeNkdEIMV7wY6bX5987HzIs0_gWgcPUEot8pJGYyG3g8n1GEN77Vfn1771oUCaov3xBJW02LKkio0xtRBuTbDguiU4SA-mghUxg598eWxNcG2CNQRIpvh76Fwy63rjqoSv-tbMO_RV82I0U4bT3X7S3Hy-vFl97a6-f_m2urjqLKOydByRwUmLR-lgtFiMfKBCSqeI4gwTSRmWShhEBWN4sJyPrpdcKCWEFfW7TpqPW9l5GTbgLISSzKTn5DcmPepovP67E_ytXsd7zSQVVIkq8G4nkOLPBXLRG58tTJMJEJessZCUMiR7WdG3_6B3cUmhvk5Xk7IXPVO0Uu-3lE0x11jHvRmM9FPWep91Zd8cut-Tf5KtwNkWyLUV1pAORv6n9hu31bZR</recordid><startdate>20160420</startdate><enddate>20160420</enddate><creator>Lee, By Junghan</creator><creator>Zhang, Zhuo</creator><creator>Baek, Seunghyun</creator><creator>Kim, Sangkuk</creator><creator>Kim, Donghyung</creator><creator>Yong, Kijung</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160420</creationdate><title>Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability</title><author>Lee, By Junghan ; Zhang, Zhuo ; Baek, Seunghyun ; Kim, Sangkuk ; Kim, Donghyung ; Yong, Kijung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-502bd8c1f8defc17f5b3788d92954128341897a037441bc55fd68579977c7653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/925/357/1016</topic><topic>639/925/929/170</topic><topic>Energy conservation</topic><topic>Environmental protection</topic><topic>Humanities and Social Sciences</topic><topic>Hydrophobic surfaces</topic><topic>multidisciplinary</topic><topic>Projects</topic><topic>Science</topic><topic>Splitting</topic><topic>Trailers</topic><topic>Underwater</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, By Junghan</creatorcontrib><creatorcontrib>Zhang, Zhuo</creatorcontrib><creatorcontrib>Baek, Seunghyun</creatorcontrib><creatorcontrib>Kim, Sangkuk</creatorcontrib><creatorcontrib>Kim, Donghyung</creatorcontrib><creatorcontrib>Yong, Kijung</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, By Junghan</au><au>Zhang, Zhuo</au><au>Baek, Seunghyun</au><au>Kim, Sangkuk</au><au>Kim, Donghyung</au><au>Yong, Kijung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-04-20</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>24653</spage><epage>24653</epage><pages>24653-24653</pages><artnum>24653</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Drag reduction has become a serious issue in recent years in terms of energy conservation and environmental protection. Among diverse approaches for drag reduction, superhydrophobic surfaces have been mainly researched due to their high drag reducing efficiency. However, due to limited lifetime of plastron (i.e., air pockets) on superhydrophobic surfaces in underwater, the instability of dewetted surfaces has been a sticking point for practical applications. This work presents a breakthrough in improving the underwater stability of superhydrophobic surfaces by optimizing nanoscale surface structures using SiC/Si interlocked structures. These structures have an unequaled stability of underwater superhydrophobicity and enhance drag reduction capabilities,with a lifetime of plastron over 18 days and maximum velocity reduction ratio of 56%. Furthermore, through photoelectrochemical water splitting on a hierarchical SiC/Si nanostructure surface, the limited lifetime problem of air pockets was overcome by refilling the escaping gas layer, which also provides continuous drag reduction effects.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27095674</pmid><doi>10.1038/srep24653</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-04, Vol.6 (1), p.24653-24653, Article 24653 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4837397 |
source | Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 639/925/357/1016 639/925/929/170 Energy conservation Environmental protection Humanities and Social Sciences Hydrophobic surfaces multidisciplinary Projects Science Splitting Trailers Underwater Velocity |
title | Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A05%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-inspired%20dewetted%20surfaces%20based%20on%20SiC/Si%20interlocked%20structures%20for%20enhanced-underwater%20stability%20and%20regenerative-drag%20reduction%20capability&rft.jtitle=Scientific%20reports&rft.au=Lee,%20By%20Junghan&rft.date=2016-04-20&rft.volume=6&rft.issue=1&rft.spage=24653&rft.epage=24653&rft.pages=24653-24653&rft.artnum=24653&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep24653&rft_dat=%3Cproquest_pubme%3E1898676493%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898676493&rft_id=info:pmid/27095674&rfr_iscdi=true |