Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation

By assembling in a protein lattice on the host's plasma membrane, the retroviral Gag polyprotein triggers formation of the viral protein/membrane shell. The MA domain of Gag employs multiple signals--electrostatic, hydrophobic, and lipid-specific-to bring the protein to the plasma membrane, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of virology 2016-05, Vol.90 (9), p.4544-4555
Hauptverfasser: Barros, Marilia, Heinrich, Frank, Datta, Siddhartha A K, Rein, Alan, Karageorgos, Ioannis, Nanda, Hirsh, Lösche, Mathias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4555
container_issue 9
container_start_page 4544
container_title Journal of virology
container_volume 90
creator Barros, Marilia
Heinrich, Frank
Datta, Siddhartha A K
Rein, Alan
Karageorgos, Ioannis
Nanda, Hirsh
Lösche, Mathias
description By assembling in a protein lattice on the host's plasma membrane, the retroviral Gag polyprotein triggers formation of the viral protein/membrane shell. The MA domain of Gag employs multiple signals--electrostatic, hydrophobic, and lipid-specific-to bring the protein to the plasma membrane, thereby complementing protein-protein interactions, located in full-length Gag, in lattice formation. We report the interaction of myristoylated and unmyristoylated HIV-1 Gag MA domains with bilayers composed of purified lipid components to dissect these complex membrane signals and quantify their contributions to the overall interaction. Surface plasmon resonance on well-defined planar membrane models is used to quantify binding affinities and amounts of protein and yields free binding energy contributions, ΔG, of the various signals. Charge-charge interactions in the absence of the phosphatidylinositide PI(4,5)P2 attract the protein to acidic membrane surfaces, and myristoylation increases the affinity by a factor of 10; thus, our data do not provide evidence for a PI(4,5)P2 trigger of myristate exposure. Lipid-specific interactions with PI(4,5)P2, the major signal lipid in the inner plasma membrane, increase membrane attraction at a level similar to that of protein lipidation. While cholesterol does not directly engage in interactions, it augments protein affinity strongly by facilitating efficient myristate insertion and PI(4,5)P2 binding. We thus observe that the isolated MA protein, in the absence of protein-protein interaction conferred by the full-length Gag, binds the membrane with submicromolar affinities. Like other retroviral species, the Gag polyprotein of HIV-1 contains three major domains: the N-terminal, myristoylated MA domain that targets the protein to the plasma membrane of the host; a central capsid-forming domain; and the C-terminal, genome-binding nucleocapsid domain. These domains act in concert to condense Gag into a membrane-bounded protein lattice that recruits genomic RNA into the virus and forms the shell of a budding immature viral capsid. In binding studies of HIV-1 Gag MA to model membranes with well-controlled lipid composition, we dissect the multiple interactions of the MA domain with its target membrane. This results in a detailed understanding of the thermodynamic aspects that determine membrane association, preferential lipid recruitment to the viral shell, and those aspects of Gag assembly into the membrane-bound protein lattice th
doi_str_mv 10.1128/JVI.02820-15
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4836311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1790935977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-7562fdffb3782f43dd6489f245484a0169d661c568bf41f6a96ec9f3b5370c5d3</originalsourceid><addsrcrecordid>eNqNkbtvFDEQxi1ERI6Djhq5pGCDx6-1KZDgeOSii6CAiM7yru1gtGsv9h4i_z0b8hDpUo30zW8-zcyH0DMgRwBUvTo52x4RqihpQDxAKyBaNUIAf4hWhFDaCKa-H6LHtf4kBDiX_BE6pFIDlUStUHfqx67Y5PG7mFxM5zgHfLw9awCf2rnEP_hLybOP6TV-7yefnE-9xzkt-GAvfMGbPE65xjkumk3uBse7OEVnL-Un6CDYofqn13WNvn388HVz3Ow-f9pu3u6ankM7N62QNLgQOtYqGjhzTnKlA-WCK24JSO2khF5I1QUOQVotfa8D6wRrSS8cW6M3V77Tvhu9632aix3MVOJoy4XJNpq7nRR_mPP823DFJANYDF5cG5T8a-_rbMZYez8My3vyvhpoNdFM6La9B6pAMA6UL-jLK7Qvudbiw-1GQMxlgmZJ0PxL0Cwza_T8_ytu4ZvI2F82jJZ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781534124</pqid></control><display><type>article</type><title>Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Barros, Marilia ; Heinrich, Frank ; Datta, Siddhartha A K ; Rein, Alan ; Karageorgos, Ioannis ; Nanda, Hirsh ; Lösche, Mathias</creator><creatorcontrib>Barros, Marilia ; Heinrich, Frank ; Datta, Siddhartha A K ; Rein, Alan ; Karageorgos, Ioannis ; Nanda, Hirsh ; Lösche, Mathias</creatorcontrib><description>By assembling in a protein lattice on the host's plasma membrane, the retroviral Gag polyprotein triggers formation of the viral protein/membrane shell. The MA domain of Gag employs multiple signals--electrostatic, hydrophobic, and lipid-specific-to bring the protein to the plasma membrane, thereby complementing protein-protein interactions, located in full-length Gag, in lattice formation. We report the interaction of myristoylated and unmyristoylated HIV-1 Gag MA domains with bilayers composed of purified lipid components to dissect these complex membrane signals and quantify their contributions to the overall interaction. Surface plasmon resonance on well-defined planar membrane models is used to quantify binding affinities and amounts of protein and yields free binding energy contributions, ΔG, of the various signals. Charge-charge interactions in the absence of the phosphatidylinositide PI(4,5)P2 attract the protein to acidic membrane surfaces, and myristoylation increases the affinity by a factor of 10; thus, our data do not provide evidence for a PI(4,5)P2 trigger of myristate exposure. Lipid-specific interactions with PI(4,5)P2, the major signal lipid in the inner plasma membrane, increase membrane attraction at a level similar to that of protein lipidation. While cholesterol does not directly engage in interactions, it augments protein affinity strongly by facilitating efficient myristate insertion and PI(4,5)P2 binding. We thus observe that the isolated MA protein, in the absence of protein-protein interaction conferred by the full-length Gag, binds the membrane with submicromolar affinities. Like other retroviral species, the Gag polyprotein of HIV-1 contains three major domains: the N-terminal, myristoylated MA domain that targets the protein to the plasma membrane of the host; a central capsid-forming domain; and the C-terminal, genome-binding nucleocapsid domain. These domains act in concert to condense Gag into a membrane-bounded protein lattice that recruits genomic RNA into the virus and forms the shell of a budding immature viral capsid. In binding studies of HIV-1 Gag MA to model membranes with well-controlled lipid composition, we dissect the multiple interactions of the MA domain with its target membrane. This results in a detailed understanding of the thermodynamic aspects that determine membrane association, preferential lipid recruitment to the viral shell, and those aspects of Gag assembly into the membrane-bound protein lattice that are determined by MA.</description><identifier>ISSN: 0022-538X</identifier><identifier>EISSN: 1098-5514</identifier><identifier>DOI: 10.1128/JVI.02820-15</identifier><identifier>PMID: 26912608</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Cell Membrane - chemistry ; Cell Membrane - metabolism ; Cholesterol - chemistry ; Cholesterol - metabolism ; gag Gene Products, Human Immunodeficiency Virus - chemistry ; gag Gene Products, Human Immunodeficiency Virus - metabolism ; HIV Antigens - metabolism ; HIV-1 - metabolism ; Human immunodeficiency virus 1 ; Humans ; Kinetics ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; Lipid-Linked Proteins - metabolism ; Lipids - chemistry ; Membrane Microdomains - metabolism ; Membrane Proteins - metabolism ; Phosphatidylinositol 4,5-Diphosphate - metabolism ; Protein Binding ; Structure and Assembly</subject><ispartof>Journal of virology, 2016-05, Vol.90 (9), p.4544-4555</ispartof><rights>Copyright © 2016, American Society for Microbiology. All Rights Reserved.</rights><rights>Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-7562fdffb3782f43dd6489f245484a0169d661c568bf41f6a96ec9f3b5370c5d3</citedby><cites>FETCH-LOGICAL-c417t-7562fdffb3782f43dd6489f245484a0169d661c568bf41f6a96ec9f3b5370c5d3</cites><orcidid>0000-0002-2799-766X ; 0000-0001-6666-916X ; 0000-0002-4098-7490 ; 0000-0002-8579-553X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836311/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836311/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26912608$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barros, Marilia</creatorcontrib><creatorcontrib>Heinrich, Frank</creatorcontrib><creatorcontrib>Datta, Siddhartha A K</creatorcontrib><creatorcontrib>Rein, Alan</creatorcontrib><creatorcontrib>Karageorgos, Ioannis</creatorcontrib><creatorcontrib>Nanda, Hirsh</creatorcontrib><creatorcontrib>Lösche, Mathias</creatorcontrib><title>Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation</title><title>Journal of virology</title><addtitle>J Virol</addtitle><description>By assembling in a protein lattice on the host's plasma membrane, the retroviral Gag polyprotein triggers formation of the viral protein/membrane shell. The MA domain of Gag employs multiple signals--electrostatic, hydrophobic, and lipid-specific-to bring the protein to the plasma membrane, thereby complementing protein-protein interactions, located in full-length Gag, in lattice formation. We report the interaction of myristoylated and unmyristoylated HIV-1 Gag MA domains with bilayers composed of purified lipid components to dissect these complex membrane signals and quantify their contributions to the overall interaction. Surface plasmon resonance on well-defined planar membrane models is used to quantify binding affinities and amounts of protein and yields free binding energy contributions, ΔG, of the various signals. Charge-charge interactions in the absence of the phosphatidylinositide PI(4,5)P2 attract the protein to acidic membrane surfaces, and myristoylation increases the affinity by a factor of 10; thus, our data do not provide evidence for a PI(4,5)P2 trigger of myristate exposure. Lipid-specific interactions with PI(4,5)P2, the major signal lipid in the inner plasma membrane, increase membrane attraction at a level similar to that of protein lipidation. While cholesterol does not directly engage in interactions, it augments protein affinity strongly by facilitating efficient myristate insertion and PI(4,5)P2 binding. We thus observe that the isolated MA protein, in the absence of protein-protein interaction conferred by the full-length Gag, binds the membrane with submicromolar affinities. Like other retroviral species, the Gag polyprotein of HIV-1 contains three major domains: the N-terminal, myristoylated MA domain that targets the protein to the plasma membrane of the host; a central capsid-forming domain; and the C-terminal, genome-binding nucleocapsid domain. These domains act in concert to condense Gag into a membrane-bounded protein lattice that recruits genomic RNA into the virus and forms the shell of a budding immature viral capsid. In binding studies of HIV-1 Gag MA to model membranes with well-controlled lipid composition, we dissect the multiple interactions of the MA domain with its target membrane. This results in a detailed understanding of the thermodynamic aspects that determine membrane association, preferential lipid recruitment to the viral shell, and those aspects of Gag assembly into the membrane-bound protein lattice that are determined by MA.</description><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Cholesterol - chemistry</subject><subject>Cholesterol - metabolism</subject><subject>gag Gene Products, Human Immunodeficiency Virus - chemistry</subject><subject>gag Gene Products, Human Immunodeficiency Virus - metabolism</subject><subject>HIV Antigens - metabolism</subject><subject>HIV-1 - metabolism</subject><subject>Human immunodeficiency virus 1</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>Lipid-Linked Proteins - metabolism</subject><subject>Lipids - chemistry</subject><subject>Membrane Microdomains - metabolism</subject><subject>Membrane Proteins - metabolism</subject><subject>Phosphatidylinositol 4,5-Diphosphate - metabolism</subject><subject>Protein Binding</subject><subject>Structure and Assembly</subject><issn>0022-538X</issn><issn>1098-5514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkbtvFDEQxi1ERI6Djhq5pGCDx6-1KZDgeOSii6CAiM7yru1gtGsv9h4i_z0b8hDpUo30zW8-zcyH0DMgRwBUvTo52x4RqihpQDxAKyBaNUIAf4hWhFDaCKa-H6LHtf4kBDiX_BE6pFIDlUStUHfqx67Y5PG7mFxM5zgHfLw9awCf2rnEP_hLybOP6TV-7yefnE-9xzkt-GAvfMGbPE65xjkumk3uBse7OEVnL-Un6CDYofqn13WNvn388HVz3Ow-f9pu3u6ankM7N62QNLgQOtYqGjhzTnKlA-WCK24JSO2khF5I1QUOQVotfa8D6wRrSS8cW6M3V77Tvhu9632aix3MVOJoy4XJNpq7nRR_mPP823DFJANYDF5cG5T8a-_rbMZYez8My3vyvhpoNdFM6La9B6pAMA6UL-jLK7Qvudbiw-1GQMxlgmZJ0PxL0Cwza_T8_ytu4ZvI2F82jJZ4</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Barros, Marilia</creator><creator>Heinrich, Frank</creator><creator>Datta, Siddhartha A K</creator><creator>Rein, Alan</creator><creator>Karageorgos, Ioannis</creator><creator>Nanda, Hirsh</creator><creator>Lösche, Mathias</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U9</scope><scope>H94</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2799-766X</orcidid><orcidid>https://orcid.org/0000-0001-6666-916X</orcidid><orcidid>https://orcid.org/0000-0002-4098-7490</orcidid><orcidid>https://orcid.org/0000-0002-8579-553X</orcidid></search><sort><creationdate>20160501</creationdate><title>Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation</title><author>Barros, Marilia ; Heinrich, Frank ; Datta, Siddhartha A K ; Rein, Alan ; Karageorgos, Ioannis ; Nanda, Hirsh ; Lösche, Mathias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-7562fdffb3782f43dd6489f245484a0169d661c568bf41f6a96ec9f3b5370c5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Cholesterol - chemistry</topic><topic>Cholesterol - metabolism</topic><topic>gag Gene Products, Human Immunodeficiency Virus - chemistry</topic><topic>gag Gene Products, Human Immunodeficiency Virus - metabolism</topic><topic>HIV Antigens - metabolism</topic><topic>HIV-1 - metabolism</topic><topic>Human immunodeficiency virus 1</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>Lipid-Linked Proteins - metabolism</topic><topic>Lipids - chemistry</topic><topic>Membrane Microdomains - metabolism</topic><topic>Membrane Proteins - metabolism</topic><topic>Phosphatidylinositol 4,5-Diphosphate - metabolism</topic><topic>Protein Binding</topic><topic>Structure and Assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barros, Marilia</creatorcontrib><creatorcontrib>Heinrich, Frank</creatorcontrib><creatorcontrib>Datta, Siddhartha A K</creatorcontrib><creatorcontrib>Rein, Alan</creatorcontrib><creatorcontrib>Karageorgos, Ioannis</creatorcontrib><creatorcontrib>Nanda, Hirsh</creatorcontrib><creatorcontrib>Lösche, Mathias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of virology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barros, Marilia</au><au>Heinrich, Frank</au><au>Datta, Siddhartha A K</au><au>Rein, Alan</au><au>Karageorgos, Ioannis</au><au>Nanda, Hirsh</au><au>Lösche, Mathias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation</atitle><jtitle>Journal of virology</jtitle><addtitle>J Virol</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>90</volume><issue>9</issue><spage>4544</spage><epage>4555</epage><pages>4544-4555</pages><issn>0022-538X</issn><eissn>1098-5514</eissn><abstract>By assembling in a protein lattice on the host's plasma membrane, the retroviral Gag polyprotein triggers formation of the viral protein/membrane shell. The MA domain of Gag employs multiple signals--electrostatic, hydrophobic, and lipid-specific-to bring the protein to the plasma membrane, thereby complementing protein-protein interactions, located in full-length Gag, in lattice formation. We report the interaction of myristoylated and unmyristoylated HIV-1 Gag MA domains with bilayers composed of purified lipid components to dissect these complex membrane signals and quantify their contributions to the overall interaction. Surface plasmon resonance on well-defined planar membrane models is used to quantify binding affinities and amounts of protein and yields free binding energy contributions, ΔG, of the various signals. Charge-charge interactions in the absence of the phosphatidylinositide PI(4,5)P2 attract the protein to acidic membrane surfaces, and myristoylation increases the affinity by a factor of 10; thus, our data do not provide evidence for a PI(4,5)P2 trigger of myristate exposure. Lipid-specific interactions with PI(4,5)P2, the major signal lipid in the inner plasma membrane, increase membrane attraction at a level similar to that of protein lipidation. While cholesterol does not directly engage in interactions, it augments protein affinity strongly by facilitating efficient myristate insertion and PI(4,5)P2 binding. We thus observe that the isolated MA protein, in the absence of protein-protein interaction conferred by the full-length Gag, binds the membrane with submicromolar affinities. Like other retroviral species, the Gag polyprotein of HIV-1 contains three major domains: the N-terminal, myristoylated MA domain that targets the protein to the plasma membrane of the host; a central capsid-forming domain; and the C-terminal, genome-binding nucleocapsid domain. These domains act in concert to condense Gag into a membrane-bounded protein lattice that recruits genomic RNA into the virus and forms the shell of a budding immature viral capsid. In binding studies of HIV-1 Gag MA to model membranes with well-controlled lipid composition, we dissect the multiple interactions of the MA domain with its target membrane. This results in a detailed understanding of the thermodynamic aspects that determine membrane association, preferential lipid recruitment to the viral shell, and those aspects of Gag assembly into the membrane-bound protein lattice that are determined by MA.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>26912608</pmid><doi>10.1128/JVI.02820-15</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2799-766X</orcidid><orcidid>https://orcid.org/0000-0001-6666-916X</orcidid><orcidid>https://orcid.org/0000-0002-4098-7490</orcidid><orcidid>https://orcid.org/0000-0002-8579-553X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-538X
ispartof Journal of virology, 2016-05, Vol.90 (9), p.4544-4555
issn 0022-538X
1098-5514
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4836311
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Cell Membrane - chemistry
Cell Membrane - metabolism
Cholesterol - chemistry
Cholesterol - metabolism
gag Gene Products, Human Immunodeficiency Virus - chemistry
gag Gene Products, Human Immunodeficiency Virus - metabolism
HIV Antigens - metabolism
HIV-1 - metabolism
Human immunodeficiency virus 1
Humans
Kinetics
Lipid Bilayers - chemistry
Lipid Bilayers - metabolism
Lipid-Linked Proteins - metabolism
Lipids - chemistry
Membrane Microdomains - metabolism
Membrane Proteins - metabolism
Phosphatidylinositol 4,5-Diphosphate - metabolism
Protein Binding
Structure and Assembly
title Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A28%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Membrane%20Binding%20of%20HIV-1%20Matrix%20Protein:%20Dependence%20on%20Bilayer%20Composition%20and%20Protein%20Lipidation&rft.jtitle=Journal%20of%20virology&rft.au=Barros,%20Marilia&rft.date=2016-05-01&rft.volume=90&rft.issue=9&rft.spage=4544&rft.epage=4555&rft.pages=4544-4555&rft.issn=0022-538X&rft.eissn=1098-5514&rft_id=info:doi/10.1128/JVI.02820-15&rft_dat=%3Cproquest_pubme%3E1790935977%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1781534124&rft_id=info:pmid/26912608&rfr_iscdi=true