An integrated framework for targeting functional networks via transcranial magnetic stimulation

Transcranial magnetic stimulation (TMS) is a powerful investigational tool for in vivo manipulation of regional or network activity, with a growing number of potential clinical applications. Unfortunately, the vast majority of targeting strategies remain limited by their reliance on non-realistic br...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2016-02, Vol.127, p.86-96
Hauptverfasser: Opitz, Alexander, Fox, Michael D., Craddock, R. Cameron, Colcombe, Stan, Milham, Michael P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 96
container_issue
container_start_page 86
container_title NeuroImage (Orlando, Fla.)
container_volume 127
creator Opitz, Alexander
Fox, Michael D.
Craddock, R. Cameron
Colcombe, Stan
Milham, Michael P.
description Transcranial magnetic stimulation (TMS) is a powerful investigational tool for in vivo manipulation of regional or network activity, with a growing number of potential clinical applications. Unfortunately, the vast majority of targeting strategies remain limited by their reliance on non-realistic brain models and assumptions that anatomo-functional relationships are 1:1. Here, we present an integrated framework that combines anatomically realistic finite element models of the human head with resting functional MRI to predict functional networks targeted via TMS at a given coil location and orientation. Using data from the Human Connectome Project, we provide an example implementation focused on dorsolateral prefrontal cortex (DLPFC). Three distinct DLPFC stimulation zones were identified, differing with respect to the network to be affected (default, frontoparietal) and sensitivity to coil orientation. Network profiles generated for DLPFC targets previously published for treating depression revealed substantial variability across studies, highlighting a potentially critical technical issue. •We present a principled, integrated framework for predicting the functional networks to be activated by TMS on an individual basis.•Initial application of the framework demonstrated systematic variation in the networks to be impacted by DLPFC stimulation, which depended on coil location and orientation.•Three distinct DLPFC stimulation zones were revealed, differing with respect to the network to be affected (default, frontoparietal) and sensitivity to coil orientation.•The network profiles generated for previously published depression targets varied substantially across studies.
doi_str_mv 10.1016/j.neuroimage.2015.11.040
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4836057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811915010629</els_id><sourcerecordid>3955276491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-251a15c2152184c90012e7285af46b5692f28d1c4a9aa8cf03ea0936e536189a3</originalsourceid><addsrcrecordid>eNqNkUtv1TAQhSMEog_4CygSGzYJM07s2BukUkFBqsQG1pbrTIIvuXaxnYv49zi6pTw2sLEtne_MjOdUVY3QIqB4uWs9rTG4vZmpZYC8RWyhhwfVKYLijeIDe7i9eddIRHVSnaW0AwCFvXxcnTAhQLIeTyt94WvnM83RZBrrKZo9fQvxSz2FWGcTZ8rOz_W0eptd8GapPeUNSPXBmTpH45MthytKmaaIztYpu_26mM3wpHo0mSXR07v7vPr09s3Hy3fN9Yer95cX140VIHLDOBrkliFnKHurAJDRwCQ3Uy9uuFBsYnJE2xtljLQTdGRAdYJ4J1Aq051Xr451b9ebPY2WfBlt0bex7Ch-18E4_afi3Wc9h4PuZSeAD6XAi7sCMXxdKWW9d8nSshhPYU0aByH50APH_0E5HxTIvqDP_0J3YY1ljUdKMSVgo-SRsjGkFGm6nxtBb4Hrnf4VuN4C14i6BF6sz37_973xZ8IFeH0EqGz_4CjqZB15S6OLZLMeg_t3lx_qU8L8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765929604</pqid></control><display><type>article</type><title>An integrated framework for targeting functional networks via transcranial magnetic stimulation</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Opitz, Alexander ; Fox, Michael D. ; Craddock, R. Cameron ; Colcombe, Stan ; Milham, Michael P.</creator><creatorcontrib>Opitz, Alexander ; Fox, Michael D. ; Craddock, R. Cameron ; Colcombe, Stan ; Milham, Michael P.</creatorcontrib><description>Transcranial magnetic stimulation (TMS) is a powerful investigational tool for in vivo manipulation of regional or network activity, with a growing number of potential clinical applications. Unfortunately, the vast majority of targeting strategies remain limited by their reliance on non-realistic brain models and assumptions that anatomo-functional relationships are 1:1. Here, we present an integrated framework that combines anatomically realistic finite element models of the human head with resting functional MRI to predict functional networks targeted via TMS at a given coil location and orientation. Using data from the Human Connectome Project, we provide an example implementation focused on dorsolateral prefrontal cortex (DLPFC). Three distinct DLPFC stimulation zones were identified, differing with respect to the network to be affected (default, frontoparietal) and sensitivity to coil orientation. Network profiles generated for DLPFC targets previously published for treating depression revealed substantial variability across studies, highlighting a potentially critical technical issue. •We present a principled, integrated framework for predicting the functional networks to be activated by TMS on an individual basis.•Initial application of the framework demonstrated systematic variation in the networks to be impacted by DLPFC stimulation, which depended on coil location and orientation.•Three distinct DLPFC stimulation zones were revealed, differing with respect to the network to be affected (default, frontoparietal) and sensitivity to coil orientation.•The network profiles generated for previously published depression targets varied substantially across studies.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2015.11.040</identifier><identifier>PMID: 26608241</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Brain Mapping - methods ; Brain research ; Clinical outcomes ; Finite Element Analysis ; Humans ; Image Processing, Computer-Assisted ; Inventors ; Magnetic Resonance Imaging ; Models, Neurological ; Prefrontal Cortex ; Studies ; Transcranial Magnetic Stimulation - methods ; Transcranial Magnetic Stimulation - standards</subject><ispartof>NeuroImage (Orlando, Fla.), 2016-02, Vol.127, p.86-96</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 15, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-251a15c2152184c90012e7285af46b5692f28d1c4a9aa8cf03ea0936e536189a3</citedby><cites>FETCH-LOGICAL-c606t-251a15c2152184c90012e7285af46b5692f28d1c4a9aa8cf03ea0936e536189a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1765929604?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26608241$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Opitz, Alexander</creatorcontrib><creatorcontrib>Fox, Michael D.</creatorcontrib><creatorcontrib>Craddock, R. Cameron</creatorcontrib><creatorcontrib>Colcombe, Stan</creatorcontrib><creatorcontrib>Milham, Michael P.</creatorcontrib><title>An integrated framework for targeting functional networks via transcranial magnetic stimulation</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Transcranial magnetic stimulation (TMS) is a powerful investigational tool for in vivo manipulation of regional or network activity, with a growing number of potential clinical applications. Unfortunately, the vast majority of targeting strategies remain limited by their reliance on non-realistic brain models and assumptions that anatomo-functional relationships are 1:1. Here, we present an integrated framework that combines anatomically realistic finite element models of the human head with resting functional MRI to predict functional networks targeted via TMS at a given coil location and orientation. Using data from the Human Connectome Project, we provide an example implementation focused on dorsolateral prefrontal cortex (DLPFC). Three distinct DLPFC stimulation zones were identified, differing with respect to the network to be affected (default, frontoparietal) and sensitivity to coil orientation. Network profiles generated for DLPFC targets previously published for treating depression revealed substantial variability across studies, highlighting a potentially critical technical issue. •We present a principled, integrated framework for predicting the functional networks to be activated by TMS on an individual basis.•Initial application of the framework demonstrated systematic variation in the networks to be impacted by DLPFC stimulation, which depended on coil location and orientation.•Three distinct DLPFC stimulation zones were revealed, differing with respect to the network to be affected (default, frontoparietal) and sensitivity to coil orientation.•The network profiles generated for previously published depression targets varied substantially across studies.</description><subject>Brain Mapping - methods</subject><subject>Brain research</subject><subject>Clinical outcomes</subject><subject>Finite Element Analysis</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Inventors</subject><subject>Magnetic Resonance Imaging</subject><subject>Models, Neurological</subject><subject>Prefrontal Cortex</subject><subject>Studies</subject><subject>Transcranial Magnetic Stimulation - methods</subject><subject>Transcranial Magnetic Stimulation - standards</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkUtv1TAQhSMEog_4CygSGzYJM07s2BukUkFBqsQG1pbrTIIvuXaxnYv49zi6pTw2sLEtne_MjOdUVY3QIqB4uWs9rTG4vZmpZYC8RWyhhwfVKYLijeIDe7i9eddIRHVSnaW0AwCFvXxcnTAhQLIeTyt94WvnM83RZBrrKZo9fQvxSz2FWGcTZ8rOz_W0eptd8GapPeUNSPXBmTpH45MthytKmaaIztYpu_26mM3wpHo0mSXR07v7vPr09s3Hy3fN9Yer95cX140VIHLDOBrkliFnKHurAJDRwCQ3Uy9uuFBsYnJE2xtljLQTdGRAdYJ4J1Aq051Xr451b9ebPY2WfBlt0bex7Ch-18E4_afi3Wc9h4PuZSeAD6XAi7sCMXxdKWW9d8nSshhPYU0aByH50APH_0E5HxTIvqDP_0J3YY1ljUdKMSVgo-SRsjGkFGm6nxtBb4Hrnf4VuN4C14i6BF6sz37_973xZ8IFeH0EqGz_4CjqZB15S6OLZLMeg_t3lx_qU8L8</recordid><startdate>20160215</startdate><enddate>20160215</enddate><creator>Opitz, Alexander</creator><creator>Fox, Michael D.</creator><creator>Craddock, R. Cameron</creator><creator>Colcombe, Stan</creator><creator>Milham, Michael P.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20160215</creationdate><title>An integrated framework for targeting functional networks via transcranial magnetic stimulation</title><author>Opitz, Alexander ; Fox, Michael D. ; Craddock, R. Cameron ; Colcombe, Stan ; Milham, Michael P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-251a15c2152184c90012e7285af46b5692f28d1c4a9aa8cf03ea0936e536189a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Brain Mapping - methods</topic><topic>Brain research</topic><topic>Clinical outcomes</topic><topic>Finite Element Analysis</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Inventors</topic><topic>Magnetic Resonance Imaging</topic><topic>Models, Neurological</topic><topic>Prefrontal Cortex</topic><topic>Studies</topic><topic>Transcranial Magnetic Stimulation - methods</topic><topic>Transcranial Magnetic Stimulation - standards</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Opitz, Alexander</creatorcontrib><creatorcontrib>Fox, Michael D.</creatorcontrib><creatorcontrib>Craddock, R. Cameron</creatorcontrib><creatorcontrib>Colcombe, Stan</creatorcontrib><creatorcontrib>Milham, Michael P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Opitz, Alexander</au><au>Fox, Michael D.</au><au>Craddock, R. Cameron</au><au>Colcombe, Stan</au><au>Milham, Michael P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integrated framework for targeting functional networks via transcranial magnetic stimulation</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2016-02-15</date><risdate>2016</risdate><volume>127</volume><spage>86</spage><epage>96</epage><pages>86-96</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Transcranial magnetic stimulation (TMS) is a powerful investigational tool for in vivo manipulation of regional or network activity, with a growing number of potential clinical applications. Unfortunately, the vast majority of targeting strategies remain limited by their reliance on non-realistic brain models and assumptions that anatomo-functional relationships are 1:1. Here, we present an integrated framework that combines anatomically realistic finite element models of the human head with resting functional MRI to predict functional networks targeted via TMS at a given coil location and orientation. Using data from the Human Connectome Project, we provide an example implementation focused on dorsolateral prefrontal cortex (DLPFC). Three distinct DLPFC stimulation zones were identified, differing with respect to the network to be affected (default, frontoparietal) and sensitivity to coil orientation. Network profiles generated for DLPFC targets previously published for treating depression revealed substantial variability across studies, highlighting a potentially critical technical issue. •We present a principled, integrated framework for predicting the functional networks to be activated by TMS on an individual basis.•Initial application of the framework demonstrated systematic variation in the networks to be impacted by DLPFC stimulation, which depended on coil location and orientation.•Three distinct DLPFC stimulation zones were revealed, differing with respect to the network to be affected (default, frontoparietal) and sensitivity to coil orientation.•The network profiles generated for previously published depression targets varied substantially across studies.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26608241</pmid><doi>10.1016/j.neuroimage.2015.11.040</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2016-02, Vol.127, p.86-96
issn 1053-8119
1095-9572
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4836057
source MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects Brain Mapping - methods
Brain research
Clinical outcomes
Finite Element Analysis
Humans
Image Processing, Computer-Assisted
Inventors
Magnetic Resonance Imaging
Models, Neurological
Prefrontal Cortex
Studies
Transcranial Magnetic Stimulation - methods
Transcranial Magnetic Stimulation - standards
title An integrated framework for targeting functional networks via transcranial magnetic stimulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A53%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integrated%20framework%20for%20targeting%20functional%20networks%20via%20transcranial%20magnetic%20stimulation&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Opitz,%20Alexander&rft.date=2016-02-15&rft.volume=127&rft.spage=86&rft.epage=96&rft.pages=86-96&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2015.11.040&rft_dat=%3Cproquest_pubme%3E3955276491%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765929604&rft_id=info:pmid/26608241&rft_els_id=S1053811915010629&rfr_iscdi=true