Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation

Alginate hydrogel is a popular biologically inert material that is widely used in 3D bioprinting, especially in extrusion-based printing. However, the printed cells in this hydrogel could not degrade the surrounding alginate gel matrix, causing them to remain in a poorly proliferating and non-differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-04, Vol.6 (1), p.24474-24474, Article 24474
Hauptverfasser: Wu, Zhengjie, Su, Xin, Xu, Yuanyuan, Kong, Bin, Sun, Wei, Mi, Shengli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24474
container_issue 1
container_start_page 24474
container_title Scientific reports
container_volume 6
creator Wu, Zhengjie
Su, Xin
Xu, Yuanyuan
Kong, Bin
Sun, Wei
Mi, Shengli
description Alginate hydrogel is a popular biologically inert material that is widely used in 3D bioprinting, especially in extrusion-based printing. However, the printed cells in this hydrogel could not degrade the surrounding alginate gel matrix, causing them to remain in a poorly proliferating and non-differentiating state. Here, we report a novel study of the 3D printing of human corneal epithelial cells (HCECs)/collagen/gelatin/alginate hydrogel incubated with a medium containing sodium citrate to obtain degradation-controllable cell-laden tissue constructs. The 3D-printed hydrogel network with interconnected channels and a macroporous structure was stable and achieved high cell viability (over 90%). By altering the mole ratio of sodium citrate/sodium alginate, the degradation time of the bioprinting constructs can be controlled. Cell proliferation and specific marker protein expression results also revealed that with the help of sodium citrate degradation, the printed HCECs showed a higher proliferation rate and greater cytokeratin 3(CK3) expression, indicating that this newly developed method may help to improve the alginate bioink system for the application of 3D bioprinting in tissue engineering.
doi_str_mv 10.1038/srep24474
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4835808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898682661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-a0f08cbdc1a113345f681a3b5c8948145ad062ff9035cfcaddcd1a21a4d193af3</originalsourceid><addsrcrecordid>eNplkUtrGzEUhUVpqIPrRf9AGcimCUyj51izCbQmLzBkk0J34lrS2AryyJE0Kfn3kbFrnFabK3E_HZ2rg9AXgr8TzORlinZDOZ_yD-iUYi5qyij9eLQfoUlKT7gsQVtO2k9oRKe4JWQqTtHvny5souuz65dVXkVra-PWtk8u9OArbb2vPRjbV9mlNNhKhz7lOOicqj8ur7bnHIP3sPC2MnYZwUAulz-jkw58spN9HaNfN9ePs7t6_nB7P_sxrzVnMteAOyz1wmgChDDGRddIAmwhtGy5JFyAwQ3tuhYzoTsNxmhDgBLghrQMOjZGVzvdzbBYW6NtsQNelZnWEF9VAKfed3q3UsvworhkQmJZBL7tBWJ4HmzKau3Sdm7obRiSIlNJJcOyFQU9-wd9CkMs_1Qo2cpG0qYhhTrfUTqGVNLpDmYIVtvI1CGywn49dn8g_wZUgIsdkLYpLW08evI_tTfufKKy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898682661</pqid></control><display><type>article</type><title>Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wu, Zhengjie ; Su, Xin ; Xu, Yuanyuan ; Kong, Bin ; Sun, Wei ; Mi, Shengli</creator><creatorcontrib>Wu, Zhengjie ; Su, Xin ; Xu, Yuanyuan ; Kong, Bin ; Sun, Wei ; Mi, Shengli</creatorcontrib><description>Alginate hydrogel is a popular biologically inert material that is widely used in 3D bioprinting, especially in extrusion-based printing. However, the printed cells in this hydrogel could not degrade the surrounding alginate gel matrix, causing them to remain in a poorly proliferating and non-differentiating state. Here, we report a novel study of the 3D printing of human corneal epithelial cells (HCECs)/collagen/gelatin/alginate hydrogel incubated with a medium containing sodium citrate to obtain degradation-controllable cell-laden tissue constructs. The 3D-printed hydrogel network with interconnected channels and a macroporous structure was stable and achieved high cell viability (over 90%). By altering the mole ratio of sodium citrate/sodium alginate, the degradation time of the bioprinting constructs can be controlled. Cell proliferation and specific marker protein expression results also revealed that with the help of sodium citrate degradation, the printed HCECs showed a higher proliferation rate and greater cytokeratin 3(CK3) expression, indicating that this newly developed method may help to improve the alginate bioink system for the application of 3D bioprinting in tissue engineering.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep24474</identifier><identifier>PMID: 27091175</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/107 ; 13/51 ; 14 ; 14/19 ; 14/35 ; 14/63 ; 631/61/2049/974 ; 631/61/54/994 ; Alginates - chemistry ; Alginic acid ; Bioprinting ; Cell proliferation ; Cell Proliferation - drug effects ; Cell Survival ; Citric acid ; Collagen ; Collagen - chemistry ; Cornea ; Cytokeratin ; Epithelial cells ; Epithelium, Corneal - cytology ; Epithelium, Corneal - drug effects ; Gelatin ; Gelatin - chemistry ; Glucuronic Acid - chemistry ; Hexuronic Acids - chemistry ; Humanities and Social Sciences ; Humans ; Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry ; Hydrogels ; multidisciplinary ; Printing ; Printing, Three-Dimensional ; Science ; Science (multidisciplinary) ; Sodium ; Sodium alginate ; Sodium citrate ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Scientific reports, 2016-04, Vol.6 (1), p.24474-24474, Article 24474</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Apr 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-a0f08cbdc1a113345f681a3b5c8948145ad062ff9035cfcaddcd1a21a4d193af3</citedby><cites>FETCH-LOGICAL-c438t-a0f08cbdc1a113345f681a3b5c8948145ad062ff9035cfcaddcd1a21a4d193af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4835808/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4835808/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27091175$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Zhengjie</creatorcontrib><creatorcontrib>Su, Xin</creatorcontrib><creatorcontrib>Xu, Yuanyuan</creatorcontrib><creatorcontrib>Kong, Bin</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Mi, Shengli</creatorcontrib><title>Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Alginate hydrogel is a popular biologically inert material that is widely used in 3D bioprinting, especially in extrusion-based printing. However, the printed cells in this hydrogel could not degrade the surrounding alginate gel matrix, causing them to remain in a poorly proliferating and non-differentiating state. Here, we report a novel study of the 3D printing of human corneal epithelial cells (HCECs)/collagen/gelatin/alginate hydrogel incubated with a medium containing sodium citrate to obtain degradation-controllable cell-laden tissue constructs. The 3D-printed hydrogel network with interconnected channels and a macroporous structure was stable and achieved high cell viability (over 90%). By altering the mole ratio of sodium citrate/sodium alginate, the degradation time of the bioprinting constructs can be controlled. Cell proliferation and specific marker protein expression results also revealed that with the help of sodium citrate degradation, the printed HCECs showed a higher proliferation rate and greater cytokeratin 3(CK3) expression, indicating that this newly developed method may help to improve the alginate bioink system for the application of 3D bioprinting in tissue engineering.</description><subject>13/107</subject><subject>13/51</subject><subject>14</subject><subject>14/19</subject><subject>14/35</subject><subject>14/63</subject><subject>631/61/2049/974</subject><subject>631/61/54/994</subject><subject>Alginates - chemistry</subject><subject>Alginic acid</subject><subject>Bioprinting</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival</subject><subject>Citric acid</subject><subject>Collagen</subject><subject>Collagen - chemistry</subject><subject>Cornea</subject><subject>Cytokeratin</subject><subject>Epithelial cells</subject><subject>Epithelium, Corneal - cytology</subject><subject>Epithelium, Corneal - drug effects</subject><subject>Gelatin</subject><subject>Gelatin - chemistry</subject><subject>Glucuronic Acid - chemistry</subject><subject>Hexuronic Acids - chemistry</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry</subject><subject>Hydrogels</subject><subject>multidisciplinary</subject><subject>Printing</subject><subject>Printing, Three-Dimensional</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sodium</subject><subject>Sodium alginate</subject><subject>Sodium citrate</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkUtrGzEUhUVpqIPrRf9AGcimCUyj51izCbQmLzBkk0J34lrS2AryyJE0Kfn3kbFrnFabK3E_HZ2rg9AXgr8TzORlinZDOZ_yD-iUYi5qyij9eLQfoUlKT7gsQVtO2k9oRKe4JWQqTtHvny5souuz65dVXkVra-PWtk8u9OArbb2vPRjbV9mlNNhKhz7lOOicqj8ur7bnHIP3sPC2MnYZwUAulz-jkw58spN9HaNfN9ePs7t6_nB7P_sxrzVnMteAOyz1wmgChDDGRddIAmwhtGy5JFyAwQ3tuhYzoTsNxmhDgBLghrQMOjZGVzvdzbBYW6NtsQNelZnWEF9VAKfed3q3UsvworhkQmJZBL7tBWJ4HmzKau3Sdm7obRiSIlNJJcOyFQU9-wd9CkMs_1Qo2cpG0qYhhTrfUTqGVNLpDmYIVtvI1CGywn49dn8g_wZUgIsdkLYpLW08evI_tTfufKKy</recordid><startdate>20160419</startdate><enddate>20160419</enddate><creator>Wu, Zhengjie</creator><creator>Su, Xin</creator><creator>Xu, Yuanyuan</creator><creator>Kong, Bin</creator><creator>Sun, Wei</creator><creator>Mi, Shengli</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160419</creationdate><title>Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation</title><author>Wu, Zhengjie ; Su, Xin ; Xu, Yuanyuan ; Kong, Bin ; Sun, Wei ; Mi, Shengli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-a0f08cbdc1a113345f681a3b5c8948145ad062ff9035cfcaddcd1a21a4d193af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13/107</topic><topic>13/51</topic><topic>14</topic><topic>14/19</topic><topic>14/35</topic><topic>14/63</topic><topic>631/61/2049/974</topic><topic>631/61/54/994</topic><topic>Alginates - chemistry</topic><topic>Alginic acid</topic><topic>Bioprinting</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival</topic><topic>Citric acid</topic><topic>Collagen</topic><topic>Collagen - chemistry</topic><topic>Cornea</topic><topic>Cytokeratin</topic><topic>Epithelial cells</topic><topic>Epithelium, Corneal - cytology</topic><topic>Epithelium, Corneal - drug effects</topic><topic>Gelatin</topic><topic>Gelatin - chemistry</topic><topic>Glucuronic Acid - chemistry</topic><topic>Hexuronic Acids - chemistry</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry</topic><topic>Hydrogels</topic><topic>multidisciplinary</topic><topic>Printing</topic><topic>Printing, Three-Dimensional</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sodium</topic><topic>Sodium alginate</topic><topic>Sodium citrate</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zhengjie</creatorcontrib><creatorcontrib>Su, Xin</creatorcontrib><creatorcontrib>Xu, Yuanyuan</creatorcontrib><creatorcontrib>Kong, Bin</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Mi, Shengli</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zhengjie</au><au>Su, Xin</au><au>Xu, Yuanyuan</au><au>Kong, Bin</au><au>Sun, Wei</au><au>Mi, Shengli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-04-19</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>24474</spage><epage>24474</epage><pages>24474-24474</pages><artnum>24474</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Alginate hydrogel is a popular biologically inert material that is widely used in 3D bioprinting, especially in extrusion-based printing. However, the printed cells in this hydrogel could not degrade the surrounding alginate gel matrix, causing them to remain in a poorly proliferating and non-differentiating state. Here, we report a novel study of the 3D printing of human corneal epithelial cells (HCECs)/collagen/gelatin/alginate hydrogel incubated with a medium containing sodium citrate to obtain degradation-controllable cell-laden tissue constructs. The 3D-printed hydrogel network with interconnected channels and a macroporous structure was stable and achieved high cell viability (over 90%). By altering the mole ratio of sodium citrate/sodium alginate, the degradation time of the bioprinting constructs can be controlled. Cell proliferation and specific marker protein expression results also revealed that with the help of sodium citrate degradation, the printed HCECs showed a higher proliferation rate and greater cytokeratin 3(CK3) expression, indicating that this newly developed method may help to improve the alginate bioink system for the application of 3D bioprinting in tissue engineering.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27091175</pmid><doi>10.1038/srep24474</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-04, Vol.6 (1), p.24474-24474, Article 24474
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4835808
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry
subjects 13/107
13/51
14
14/19
14/35
14/63
631/61/2049/974
631/61/54/994
Alginates - chemistry
Alginic acid
Bioprinting
Cell proliferation
Cell Proliferation - drug effects
Cell Survival
Citric acid
Collagen
Collagen - chemistry
Cornea
Cytokeratin
Epithelial cells
Epithelium, Corneal - cytology
Epithelium, Corneal - drug effects
Gelatin
Gelatin - chemistry
Glucuronic Acid - chemistry
Hexuronic Acids - chemistry
Humanities and Social Sciences
Humans
Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry
Hydrogels
multidisciplinary
Printing
Printing, Three-Dimensional
Science
Science (multidisciplinary)
Sodium
Sodium alginate
Sodium citrate
Tissue engineering
Tissue Engineering - methods
Tissue Scaffolds - chemistry
title Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioprinting%20three-dimensional%20cell-laden%20tissue%20constructs%20with%20controllable%20degradation&rft.jtitle=Scientific%20reports&rft.au=Wu,%20Zhengjie&rft.date=2016-04-19&rft.volume=6&rft.issue=1&rft.spage=24474&rft.epage=24474&rft.pages=24474-24474&rft.artnum=24474&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep24474&rft_dat=%3Cproquest_pubme%3E1898682661%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898682661&rft_id=info:pmid/27091175&rfr_iscdi=true