Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models

Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are gener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of human genetics 2016-04, Vol.98 (4), p.653-666
Hauptverfasser: Chen, Han, Wang, Chaolong, Conomos, Matthew P., Stilp, Adrienne M., Li, Zilin, Sofer, Tamar, Szpiro, Adam A., Chen, Wei, Brehm, John M., Celedón, Juan C., Redline, Susan, Papanicolaou, George J., Thornton, Timothy A., Laurie, Cathy C., Rice, Kenneth, Lin, Xihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 666
container_issue 4
container_start_page 653
container_title American journal of human genetics
container_volume 98
creator Chen, Han
Wang, Chaolong
Conomos, Matthew P.
Stilp, Adrienne M.
Li, Zilin
Sofer, Tamar
Szpiro, Adam A.
Chen, Wei
Brehm, John M.
Celedón, Juan C.
Redline, Susan
Papanicolaou, George J.
Thornton, Timothy A.
Laurie, Cathy C.
Rice, Kenneth
Lin, Xihong
description Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM’s constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs.
doi_str_mv 10.1016/j.ajhg.2016.02.012
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4833218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000292971600063X</els_id><sourcerecordid>4036117531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c582t-6700b16ec16341d8c43eb65a502a180dd026de464c1d8584262f26c0aa68e8333</originalsourceid><addsrcrecordid>eNqNkk-LFDEQxRtR3HH1C3iQgBcv3VbSnT8DIqyDrsIsiq7nkElqZtP0JLNJ96D45c04u4t6EE8JqV896qVeVT2l0FCg4mXfmP5q07Byb4A1QNm9akZ5K2shgN-vZgDA6jmby5PqUc49AKUK2ofVCZNAVSfprPqxiGFMcSDrmMinuJsGM_oYyJcxTXacEhITHPmM5RldwJx_gW98MOk7uUzGj5n4QM4x4OgtOcs5Wn8rMTmPmey9Icu48fkAXPhv6MhFdDjkx9WDtRkyPrk5T6uv795eLt7Xy4_nHxZny9pyxcZaSIAVFWipaDvqlO1aXAluODBT_DgHTDjsRGdLkauOCbZmwoIxQqFq2_a0en3U3U2rLTqLxbEZ9C75bXGho_H6z0rwV3oT97or3YyqIvDiRiDF6wnzqLc-WxwGEzBOWVM5h7nkooP_QOVcKS45K-jzv9A-TimUnyiU6jhXSvJCsSNlU8w54fpubgr6EAPd60MM9CEGGpguMShNz353fNdyu_cCvDoCZQ2495h0th6DRecT2lG76P-l_xP8qcRd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1784558875</pqid></control><display><type>article</type><title>Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Chen, Han ; Wang, Chaolong ; Conomos, Matthew P. ; Stilp, Adrienne M. ; Li, Zilin ; Sofer, Tamar ; Szpiro, Adam A. ; Chen, Wei ; Brehm, John M. ; Celedón, Juan C. ; Redline, Susan ; Papanicolaou, George J. ; Thornton, Timothy A. ; Laurie, Cathy C. ; Rice, Kenneth ; Lin, Xihong</creator><creatorcontrib>Chen, Han ; Wang, Chaolong ; Conomos, Matthew P. ; Stilp, Adrienne M. ; Li, Zilin ; Sofer, Tamar ; Szpiro, Adam A. ; Chen, Wei ; Brehm, John M. ; Celedón, Juan C. ; Redline, Susan ; Papanicolaou, George J. ; Thornton, Timothy A. ; Laurie, Cathy C. ; Rice, Kenneth ; Lin, Xihong</creatorcontrib><description>Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM’s constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs.</description><identifier>ISSN: 0002-9297</identifier><identifier>EISSN: 1537-6605</identifier><identifier>DOI: 10.1016/j.ajhg.2016.02.012</identifier><identifier>PMID: 27018471</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Asthma ; Asthma - genetics ; Case-Control Studies ; Central America ; Computer Simulation ; Data analysis ; Genetic Association Studies - methods ; Genetics ; Genetics, Population - methods ; Genomes ; Genotyping Techniques ; Humans ; Linear Models ; Logistic Models ; Models, Genetic ; Phenotype ; Phylogeography ; Polymorphism, Single Nucleotide ; Simulation ; South America</subject><ispartof>American journal of human genetics, 2016-04, Vol.98 (4), p.653-666</ispartof><rights>2016 The American Society of Human Genetics</rights><rights>Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Cell Press Apr 7, 2016</rights><rights>2016 by The American Society of Human Genetics. All rights reserved. 2016 The American Society of Human Genetics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c582t-6700b16ec16341d8c43eb65a502a180dd026de464c1d8584262f26c0aa68e8333</citedby><cites>FETCH-LOGICAL-c582t-6700b16ec16341d8c43eb65a502a180dd026de464c1d8584262f26c0aa68e8333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4833218/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S000292971600063X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27018471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Han</creatorcontrib><creatorcontrib>Wang, Chaolong</creatorcontrib><creatorcontrib>Conomos, Matthew P.</creatorcontrib><creatorcontrib>Stilp, Adrienne M.</creatorcontrib><creatorcontrib>Li, Zilin</creatorcontrib><creatorcontrib>Sofer, Tamar</creatorcontrib><creatorcontrib>Szpiro, Adam A.</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Brehm, John M.</creatorcontrib><creatorcontrib>Celedón, Juan C.</creatorcontrib><creatorcontrib>Redline, Susan</creatorcontrib><creatorcontrib>Papanicolaou, George J.</creatorcontrib><creatorcontrib>Thornton, Timothy A.</creatorcontrib><creatorcontrib>Laurie, Cathy C.</creatorcontrib><creatorcontrib>Rice, Kenneth</creatorcontrib><creatorcontrib>Lin, Xihong</creatorcontrib><title>Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models</title><title>American journal of human genetics</title><addtitle>Am J Hum Genet</addtitle><description>Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM’s constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs.</description><subject>Asthma</subject><subject>Asthma - genetics</subject><subject>Case-Control Studies</subject><subject>Central America</subject><subject>Computer Simulation</subject><subject>Data analysis</subject><subject>Genetic Association Studies - methods</subject><subject>Genetics</subject><subject>Genetics, Population - methods</subject><subject>Genomes</subject><subject>Genotyping Techniques</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Logistic Models</subject><subject>Models, Genetic</subject><subject>Phenotype</subject><subject>Phylogeography</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Simulation</subject><subject>South America</subject><issn>0002-9297</issn><issn>1537-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk-LFDEQxRtR3HH1C3iQgBcv3VbSnT8DIqyDrsIsiq7nkElqZtP0JLNJ96D45c04u4t6EE8JqV896qVeVT2l0FCg4mXfmP5q07Byb4A1QNm9akZ5K2shgN-vZgDA6jmby5PqUc49AKUK2ofVCZNAVSfprPqxiGFMcSDrmMinuJsGM_oYyJcxTXacEhITHPmM5RldwJx_gW98MOk7uUzGj5n4QM4x4OgtOcs5Wn8rMTmPmey9Icu48fkAXPhv6MhFdDjkx9WDtRkyPrk5T6uv795eLt7Xy4_nHxZny9pyxcZaSIAVFWipaDvqlO1aXAluODBT_DgHTDjsRGdLkauOCbZmwoIxQqFq2_a0en3U3U2rLTqLxbEZ9C75bXGho_H6z0rwV3oT97or3YyqIvDiRiDF6wnzqLc-WxwGEzBOWVM5h7nkooP_QOVcKS45K-jzv9A-TimUnyiU6jhXSvJCsSNlU8w54fpubgr6EAPd60MM9CEGGpguMShNz353fNdyu_cCvDoCZQ2495h0th6DRecT2lG76P-l_xP8qcRd</recordid><startdate>20160407</startdate><enddate>20160407</enddate><creator>Chen, Han</creator><creator>Wang, Chaolong</creator><creator>Conomos, Matthew P.</creator><creator>Stilp, Adrienne M.</creator><creator>Li, Zilin</creator><creator>Sofer, Tamar</creator><creator>Szpiro, Adam A.</creator><creator>Chen, Wei</creator><creator>Brehm, John M.</creator><creator>Celedón, Juan C.</creator><creator>Redline, Susan</creator><creator>Papanicolaou, George J.</creator><creator>Thornton, Timothy A.</creator><creator>Laurie, Cathy C.</creator><creator>Rice, Kenneth</creator><creator>Lin, Xihong</creator><general>Elsevier Inc</general><general>Cell Press</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160407</creationdate><title>Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models</title><author>Chen, Han ; Wang, Chaolong ; Conomos, Matthew P. ; Stilp, Adrienne M. ; Li, Zilin ; Sofer, Tamar ; Szpiro, Adam A. ; Chen, Wei ; Brehm, John M. ; Celedón, Juan C. ; Redline, Susan ; Papanicolaou, George J. ; Thornton, Timothy A. ; Laurie, Cathy C. ; Rice, Kenneth ; Lin, Xihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c582t-6700b16ec16341d8c43eb65a502a180dd026de464c1d8584262f26c0aa68e8333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asthma</topic><topic>Asthma - genetics</topic><topic>Case-Control Studies</topic><topic>Central America</topic><topic>Computer Simulation</topic><topic>Data analysis</topic><topic>Genetic Association Studies - methods</topic><topic>Genetics</topic><topic>Genetics, Population - methods</topic><topic>Genomes</topic><topic>Genotyping Techniques</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Logistic Models</topic><topic>Models, Genetic</topic><topic>Phenotype</topic><topic>Phylogeography</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Simulation</topic><topic>South America</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Han</creatorcontrib><creatorcontrib>Wang, Chaolong</creatorcontrib><creatorcontrib>Conomos, Matthew P.</creatorcontrib><creatorcontrib>Stilp, Adrienne M.</creatorcontrib><creatorcontrib>Li, Zilin</creatorcontrib><creatorcontrib>Sofer, Tamar</creatorcontrib><creatorcontrib>Szpiro, Adam A.</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Brehm, John M.</creatorcontrib><creatorcontrib>Celedón, Juan C.</creatorcontrib><creatorcontrib>Redline, Susan</creatorcontrib><creatorcontrib>Papanicolaou, George J.</creatorcontrib><creatorcontrib>Thornton, Timothy A.</creatorcontrib><creatorcontrib>Laurie, Cathy C.</creatorcontrib><creatorcontrib>Rice, Kenneth</creatorcontrib><creatorcontrib>Lin, Xihong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Han</au><au>Wang, Chaolong</au><au>Conomos, Matthew P.</au><au>Stilp, Adrienne M.</au><au>Li, Zilin</au><au>Sofer, Tamar</au><au>Szpiro, Adam A.</au><au>Chen, Wei</au><au>Brehm, John M.</au><au>Celedón, Juan C.</au><au>Redline, Susan</au><au>Papanicolaou, George J.</au><au>Thornton, Timothy A.</au><au>Laurie, Cathy C.</au><au>Rice, Kenneth</au><au>Lin, Xihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models</atitle><jtitle>American journal of human genetics</jtitle><addtitle>Am J Hum Genet</addtitle><date>2016-04-07</date><risdate>2016</risdate><volume>98</volume><issue>4</issue><spage>653</spage><epage>666</epage><pages>653-666</pages><issn>0002-9297</issn><eissn>1537-6605</eissn><abstract>Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM’s constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27018471</pmid><doi>10.1016/j.ajhg.2016.02.012</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9297
ispartof American journal of human genetics, 2016-04, Vol.98 (4), p.653-666
issn 0002-9297
1537-6605
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4833218
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Asthma
Asthma - genetics
Case-Control Studies
Central America
Computer Simulation
Data analysis
Genetic Association Studies - methods
Genetics
Genetics, Population - methods
Genomes
Genotyping Techniques
Humans
Linear Models
Logistic Models
Models, Genetic
Phenotype
Phylogeography
Polymorphism, Single Nucleotide
Simulation
South America
title Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A33%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20for%20Population%20Structure%20and%20Relatedness%20for%20Binary%20Traits%20in%20Genetic%20Association%20Studies%20via%20Logistic%20Mixed%20Models&rft.jtitle=American%20journal%20of%20human%20genetics&rft.au=Chen,%20Han&rft.date=2016-04-07&rft.volume=98&rft.issue=4&rft.spage=653&rft.epage=666&rft.pages=653-666&rft.issn=0002-9297&rft.eissn=1537-6605&rft_id=info:doi/10.1016/j.ajhg.2016.02.012&rft_dat=%3Cproquest_pubme%3E4036117531%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1784558875&rft_id=info:pmid/27018471&rft_els_id=S000292971600063X&rfr_iscdi=true