Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models
Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are gener...
Gespeichert in:
Veröffentlicht in: | American journal of human genetics 2016-04, Vol.98 (4), p.653-666 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 666 |
---|---|
container_issue | 4 |
container_start_page | 653 |
container_title | American journal of human genetics |
container_volume | 98 |
creator | Chen, Han Wang, Chaolong Conomos, Matthew P. Stilp, Adrienne M. Li, Zilin Sofer, Tamar Szpiro, Adam A. Chen, Wei Brehm, John M. Celedón, Juan C. Redline, Susan Papanicolaou, George J. Thornton, Timothy A. Laurie, Cathy C. Rice, Kenneth Lin, Xihong |
description | Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM’s constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs. |
doi_str_mv | 10.1016/j.ajhg.2016.02.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4833218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000292971600063X</els_id><sourcerecordid>4036117531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c582t-6700b16ec16341d8c43eb65a502a180dd026de464c1d8584262f26c0aa68e8333</originalsourceid><addsrcrecordid>eNqNkk-LFDEQxRtR3HH1C3iQgBcv3VbSnT8DIqyDrsIsiq7nkElqZtP0JLNJ96D45c04u4t6EE8JqV896qVeVT2l0FCg4mXfmP5q07Byb4A1QNm9akZ5K2shgN-vZgDA6jmby5PqUc49AKUK2ofVCZNAVSfprPqxiGFMcSDrmMinuJsGM_oYyJcxTXacEhITHPmM5RldwJx_gW98MOk7uUzGj5n4QM4x4OgtOcs5Wn8rMTmPmey9Icu48fkAXPhv6MhFdDjkx9WDtRkyPrk5T6uv795eLt7Xy4_nHxZny9pyxcZaSIAVFWipaDvqlO1aXAluODBT_DgHTDjsRGdLkauOCbZmwoIxQqFq2_a0en3U3U2rLTqLxbEZ9C75bXGho_H6z0rwV3oT97or3YyqIvDiRiDF6wnzqLc-WxwGEzBOWVM5h7nkooP_QOVcKS45K-jzv9A-TimUnyiU6jhXSvJCsSNlU8w54fpubgr6EAPd60MM9CEGGpguMShNz353fNdyu_cCvDoCZQ2495h0th6DRecT2lG76P-l_xP8qcRd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1784558875</pqid></control><display><type>article</type><title>Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Chen, Han ; Wang, Chaolong ; Conomos, Matthew P. ; Stilp, Adrienne M. ; Li, Zilin ; Sofer, Tamar ; Szpiro, Adam A. ; Chen, Wei ; Brehm, John M. ; Celedón, Juan C. ; Redline, Susan ; Papanicolaou, George J. ; Thornton, Timothy A. ; Laurie, Cathy C. ; Rice, Kenneth ; Lin, Xihong</creator><creatorcontrib>Chen, Han ; Wang, Chaolong ; Conomos, Matthew P. ; Stilp, Adrienne M. ; Li, Zilin ; Sofer, Tamar ; Szpiro, Adam A. ; Chen, Wei ; Brehm, John M. ; Celedón, Juan C. ; Redline, Susan ; Papanicolaou, George J. ; Thornton, Timothy A. ; Laurie, Cathy C. ; Rice, Kenneth ; Lin, Xihong</creatorcontrib><description>Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM’s constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs.</description><identifier>ISSN: 0002-9297</identifier><identifier>EISSN: 1537-6605</identifier><identifier>DOI: 10.1016/j.ajhg.2016.02.012</identifier><identifier>PMID: 27018471</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Asthma ; Asthma - genetics ; Case-Control Studies ; Central America ; Computer Simulation ; Data analysis ; Genetic Association Studies - methods ; Genetics ; Genetics, Population - methods ; Genomes ; Genotyping Techniques ; Humans ; Linear Models ; Logistic Models ; Models, Genetic ; Phenotype ; Phylogeography ; Polymorphism, Single Nucleotide ; Simulation ; South America</subject><ispartof>American journal of human genetics, 2016-04, Vol.98 (4), p.653-666</ispartof><rights>2016 The American Society of Human Genetics</rights><rights>Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Cell Press Apr 7, 2016</rights><rights>2016 by The American Society of Human Genetics. All rights reserved. 2016 The American Society of Human Genetics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c582t-6700b16ec16341d8c43eb65a502a180dd026de464c1d8584262f26c0aa68e8333</citedby><cites>FETCH-LOGICAL-c582t-6700b16ec16341d8c43eb65a502a180dd026de464c1d8584262f26c0aa68e8333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4833218/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S000292971600063X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27018471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Han</creatorcontrib><creatorcontrib>Wang, Chaolong</creatorcontrib><creatorcontrib>Conomos, Matthew P.</creatorcontrib><creatorcontrib>Stilp, Adrienne M.</creatorcontrib><creatorcontrib>Li, Zilin</creatorcontrib><creatorcontrib>Sofer, Tamar</creatorcontrib><creatorcontrib>Szpiro, Adam A.</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Brehm, John M.</creatorcontrib><creatorcontrib>Celedón, Juan C.</creatorcontrib><creatorcontrib>Redline, Susan</creatorcontrib><creatorcontrib>Papanicolaou, George J.</creatorcontrib><creatorcontrib>Thornton, Timothy A.</creatorcontrib><creatorcontrib>Laurie, Cathy C.</creatorcontrib><creatorcontrib>Rice, Kenneth</creatorcontrib><creatorcontrib>Lin, Xihong</creatorcontrib><title>Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models</title><title>American journal of human genetics</title><addtitle>Am J Hum Genet</addtitle><description>Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM’s constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs.</description><subject>Asthma</subject><subject>Asthma - genetics</subject><subject>Case-Control Studies</subject><subject>Central America</subject><subject>Computer Simulation</subject><subject>Data analysis</subject><subject>Genetic Association Studies - methods</subject><subject>Genetics</subject><subject>Genetics, Population - methods</subject><subject>Genomes</subject><subject>Genotyping Techniques</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Logistic Models</subject><subject>Models, Genetic</subject><subject>Phenotype</subject><subject>Phylogeography</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Simulation</subject><subject>South America</subject><issn>0002-9297</issn><issn>1537-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk-LFDEQxRtR3HH1C3iQgBcv3VbSnT8DIqyDrsIsiq7nkElqZtP0JLNJ96D45c04u4t6EE8JqV896qVeVT2l0FCg4mXfmP5q07Byb4A1QNm9akZ5K2shgN-vZgDA6jmby5PqUc49AKUK2ofVCZNAVSfprPqxiGFMcSDrmMinuJsGM_oYyJcxTXacEhITHPmM5RldwJx_gW98MOk7uUzGj5n4QM4x4OgtOcs5Wn8rMTmPmey9Icu48fkAXPhv6MhFdDjkx9WDtRkyPrk5T6uv795eLt7Xy4_nHxZny9pyxcZaSIAVFWipaDvqlO1aXAluODBT_DgHTDjsRGdLkauOCbZmwoIxQqFq2_a0en3U3U2rLTqLxbEZ9C75bXGho_H6z0rwV3oT97or3YyqIvDiRiDF6wnzqLc-WxwGEzBOWVM5h7nkooP_QOVcKS45K-jzv9A-TimUnyiU6jhXSvJCsSNlU8w54fpubgr6EAPd60MM9CEGGpguMShNz353fNdyu_cCvDoCZQ2495h0th6DRecT2lG76P-l_xP8qcRd</recordid><startdate>20160407</startdate><enddate>20160407</enddate><creator>Chen, Han</creator><creator>Wang, Chaolong</creator><creator>Conomos, Matthew P.</creator><creator>Stilp, Adrienne M.</creator><creator>Li, Zilin</creator><creator>Sofer, Tamar</creator><creator>Szpiro, Adam A.</creator><creator>Chen, Wei</creator><creator>Brehm, John M.</creator><creator>Celedón, Juan C.</creator><creator>Redline, Susan</creator><creator>Papanicolaou, George J.</creator><creator>Thornton, Timothy A.</creator><creator>Laurie, Cathy C.</creator><creator>Rice, Kenneth</creator><creator>Lin, Xihong</creator><general>Elsevier Inc</general><general>Cell Press</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160407</creationdate><title>Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models</title><author>Chen, Han ; Wang, Chaolong ; Conomos, Matthew P. ; Stilp, Adrienne M. ; Li, Zilin ; Sofer, Tamar ; Szpiro, Adam A. ; Chen, Wei ; Brehm, John M. ; Celedón, Juan C. ; Redline, Susan ; Papanicolaou, George J. ; Thornton, Timothy A. ; Laurie, Cathy C. ; Rice, Kenneth ; Lin, Xihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c582t-6700b16ec16341d8c43eb65a502a180dd026de464c1d8584262f26c0aa68e8333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asthma</topic><topic>Asthma - genetics</topic><topic>Case-Control Studies</topic><topic>Central America</topic><topic>Computer Simulation</topic><topic>Data analysis</topic><topic>Genetic Association Studies - methods</topic><topic>Genetics</topic><topic>Genetics, Population - methods</topic><topic>Genomes</topic><topic>Genotyping Techniques</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Logistic Models</topic><topic>Models, Genetic</topic><topic>Phenotype</topic><topic>Phylogeography</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Simulation</topic><topic>South America</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Han</creatorcontrib><creatorcontrib>Wang, Chaolong</creatorcontrib><creatorcontrib>Conomos, Matthew P.</creatorcontrib><creatorcontrib>Stilp, Adrienne M.</creatorcontrib><creatorcontrib>Li, Zilin</creatorcontrib><creatorcontrib>Sofer, Tamar</creatorcontrib><creatorcontrib>Szpiro, Adam A.</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Brehm, John M.</creatorcontrib><creatorcontrib>Celedón, Juan C.</creatorcontrib><creatorcontrib>Redline, Susan</creatorcontrib><creatorcontrib>Papanicolaou, George J.</creatorcontrib><creatorcontrib>Thornton, Timothy A.</creatorcontrib><creatorcontrib>Laurie, Cathy C.</creatorcontrib><creatorcontrib>Rice, Kenneth</creatorcontrib><creatorcontrib>Lin, Xihong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Han</au><au>Wang, Chaolong</au><au>Conomos, Matthew P.</au><au>Stilp, Adrienne M.</au><au>Li, Zilin</au><au>Sofer, Tamar</au><au>Szpiro, Adam A.</au><au>Chen, Wei</au><au>Brehm, John M.</au><au>Celedón, Juan C.</au><au>Redline, Susan</au><au>Papanicolaou, George J.</au><au>Thornton, Timothy A.</au><au>Laurie, Cathy C.</au><au>Rice, Kenneth</au><au>Lin, Xihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models</atitle><jtitle>American journal of human genetics</jtitle><addtitle>Am J Hum Genet</addtitle><date>2016-04-07</date><risdate>2016</risdate><volume>98</volume><issue>4</issue><spage>653</spage><epage>666</epage><pages>653-666</pages><issn>0002-9297</issn><eissn>1537-6605</eissn><abstract>Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM’s constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27018471</pmid><doi>10.1016/j.ajhg.2016.02.012</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9297 |
ispartof | American journal of human genetics, 2016-04, Vol.98 (4), p.653-666 |
issn | 0002-9297 1537-6605 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4833218 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Asthma Asthma - genetics Case-Control Studies Central America Computer Simulation Data analysis Genetic Association Studies - methods Genetics Genetics, Population - methods Genomes Genotyping Techniques Humans Linear Models Logistic Models Models, Genetic Phenotype Phylogeography Polymorphism, Single Nucleotide Simulation South America |
title | Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A33%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20for%20Population%20Structure%20and%20Relatedness%20for%20Binary%20Traits%20in%20Genetic%20Association%20Studies%20via%20Logistic%20Mixed%20Models&rft.jtitle=American%20journal%20of%20human%20genetics&rft.au=Chen,%20Han&rft.date=2016-04-07&rft.volume=98&rft.issue=4&rft.spage=653&rft.epage=666&rft.pages=653-666&rft.issn=0002-9297&rft.eissn=1537-6605&rft_id=info:doi/10.1016/j.ajhg.2016.02.012&rft_dat=%3Cproquest_pubme%3E4036117531%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1784558875&rft_id=info:pmid/27018471&rft_els_id=S000292971600063X&rfr_iscdi=true |