NOTCH, ASCL1, p53 and RB alterations define an alternative pathway driving neuroendocrine and small cell lung carcinomas
Small cell lung cancers (SCLCs) and extrapulmonary small cell cancers (SCCs) are very aggressive tumors arising de novo as primary small cell cancer with characteristic genetic lesions in RB1 and TP53. Based on murine models, neuroendocrine stem cells of the terminal bronchioli have been postulated...
Gespeichert in:
Veröffentlicht in: | International journal of cancer 2016-02, Vol.138 (4), p.927-938 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 938 |
---|---|
container_issue | 4 |
container_start_page | 927 |
container_title | International journal of cancer |
container_volume | 138 |
creator | Meder, Lydia König, Katharina Ozretić, Luka Schultheis, Anne M. Ueckeroth, Frank Ade, Carsten P. Albus, Kerstin Boehm, Diana Rommerscheidt‐Fuss, Ursula Florin, Alexandra Buhl, Theresa Hartmann, Wolfgang Wolf, Jürgen Merkelbach‐Bruse, Sabine Eilers, Martin Perner, Sven Heukamp, Lukas C. Buettner, Reinhard |
description | Small cell lung cancers (SCLCs) and extrapulmonary small cell cancers (SCCs) are very aggressive tumors arising de novo as primary small cell cancer with characteristic genetic lesions in RB1 and TP53. Based on murine models, neuroendocrine stem cells of the terminal bronchioli have been postulated as the cellular origin of primary SCLC. However, both in lung and many other organs, combined small cell/non‐small cell tumors and secondary transitions from non‐small cell carcinomas upon cancer therapy to neuroendocrine and small cell tumors occur. We define features of “small cell‐ness” based on neuroendocrine markers, characteristic RB1 and TP53 mutations and small cell morphology. Furthermore, here we identify a pathway driving the pathogenesis of secondary SCLC involving inactivating NOTCH mutations, activation of the NOTCH target ASCL1 and canonical WNT‐signaling in the context of mutual bi‐allelic RB1 and TP53 lesions. Additionaly, we explored ASCL1 dependent RB inactivation by phosphorylation, which is reversible by CDK5 inhibition. We experimentally verify the NOTCH‐ASCL1‐RB‐p53 signaling axis in vitro and validate its activation by genetic alterations in vivo. We analyzed clinical tumor samples including SCLC, SCC and pulmonary large cell neuroendocrine carcinomas and adenocarcinomas using amplicon‐based Next Generation Sequencing, immunohistochemistry and fluorescence in situ hybridization. In conclusion, we identified a novel pathway underlying rare secondary SCLC which may drive small cell carcinomas in organs other than lung, as well.
What's new?
Using next generation sequencing and establishing features of ‘small cell‐ness’, we identified a NOTCH‐ASCL1‐RB1‐TP53 signaling axis driving small cell cancers. In contrast to the previously described bi‐allelic RB1/TP53 loss in neuroendocrine stem cells as origin of primary small cell neuroendocrine cancers, the NOTCH‐ASCL1 mediated signaling defines an alternative pathway driving secondary small cell neuroendocrine cancers arising from non‐small cell cancers. Moreover, we show a preclinical rational for therapeutically testing WNT‐inhibitors in small cell cancers. |
doi_str_mv | 10.1002/ijc.29835 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4832386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760907909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5795-6c680a8488353402804b1c37afb6c68d4ea20f7bf729ef38fffd032a975bc23e3</originalsourceid><addsrcrecordid>eNp1kUtr3DAUhUVpaKZpF_0DRdBNC3FyJVmWvSmkQx8JQwN9rIUsS4kGW5pI9qTz76upk9AUupHgno_Dufcg9IrACQGgp26tT2hTM_4ELQg0ogBK-FO0yBoUgrDqED1PaQ1ACIfyGTqkFSuBM1igX18vfyy_HOOz78sVOcYbzrDyHf72Aat-NFGNLviEO2OdN1mZpz6PtwZv1Hh9q3a4i27r_BX2ZorB-C7oONMdToPqe6xNfvopI1pF7XwYVHqBDqzqk3l59x-hn58-5ijF6vLz-fJsVWguGl5UuqpB1WWdt8uZaQ1lSzQTyrZ7qSuNomBFawVtjGW1tbYDRlUjeKspM-wIvZ99N1M7mE4bP0bVy010g4o7GZSTjxXvruVV2MqyZpTVVTZ4e2cQw81k0igHl_YbKW_ClCQRFTQgGmgy-uYfdB2mfK1-T3HBgZeMZOrdTOkYUorGPoQhIPd9ytyn_NNnZl__nf6BvC8wA6czcOt6s_u_kzy_WM6WvwHsJ6nG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757505431</pqid></control><display><type>article</type><title>NOTCH, ASCL1, p53 and RB alterations define an alternative pathway driving neuroendocrine and small cell lung carcinomas</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Meder, Lydia ; König, Katharina ; Ozretić, Luka ; Schultheis, Anne M. ; Ueckeroth, Frank ; Ade, Carsten P. ; Albus, Kerstin ; Boehm, Diana ; Rommerscheidt‐Fuss, Ursula ; Florin, Alexandra ; Buhl, Theresa ; Hartmann, Wolfgang ; Wolf, Jürgen ; Merkelbach‐Bruse, Sabine ; Eilers, Martin ; Perner, Sven ; Heukamp, Lukas C. ; Buettner, Reinhard</creator><creatorcontrib>Meder, Lydia ; König, Katharina ; Ozretić, Luka ; Schultheis, Anne M. ; Ueckeroth, Frank ; Ade, Carsten P. ; Albus, Kerstin ; Boehm, Diana ; Rommerscheidt‐Fuss, Ursula ; Florin, Alexandra ; Buhl, Theresa ; Hartmann, Wolfgang ; Wolf, Jürgen ; Merkelbach‐Bruse, Sabine ; Eilers, Martin ; Perner, Sven ; Heukamp, Lukas C. ; Buettner, Reinhard</creatorcontrib><description>Small cell lung cancers (SCLCs) and extrapulmonary small cell cancers (SCCs) are very aggressive tumors arising de novo as primary small cell cancer with characteristic genetic lesions in RB1 and TP53. Based on murine models, neuroendocrine stem cells of the terminal bronchioli have been postulated as the cellular origin of primary SCLC. However, both in lung and many other organs, combined small cell/non‐small cell tumors and secondary transitions from non‐small cell carcinomas upon cancer therapy to neuroendocrine and small cell tumors occur. We define features of “small cell‐ness” based on neuroendocrine markers, characteristic RB1 and TP53 mutations and small cell morphology. Furthermore, here we identify a pathway driving the pathogenesis of secondary SCLC involving inactivating NOTCH mutations, activation of the NOTCH target ASCL1 and canonical WNT‐signaling in the context of mutual bi‐allelic RB1 and TP53 lesions. Additionaly, we explored ASCL1 dependent RB inactivation by phosphorylation, which is reversible by CDK5 inhibition. We experimentally verify the NOTCH‐ASCL1‐RB‐p53 signaling axis in vitro and validate its activation by genetic alterations in vivo. We analyzed clinical tumor samples including SCLC, SCC and pulmonary large cell neuroendocrine carcinomas and adenocarcinomas using amplicon‐based Next Generation Sequencing, immunohistochemistry and fluorescence in situ hybridization. In conclusion, we identified a novel pathway underlying rare secondary SCLC which may drive small cell carcinomas in organs other than lung, as well.
What's new?
Using next generation sequencing and establishing features of ‘small cell‐ness’, we identified a NOTCH‐ASCL1‐RB1‐TP53 signaling axis driving small cell cancers. In contrast to the previously described bi‐allelic RB1/TP53 loss in neuroendocrine stem cells as origin of primary small cell neuroendocrine cancers, the NOTCH‐ASCL1 mediated signaling defines an alternative pathway driving secondary small cell neuroendocrine cancers arising from non‐small cell cancers. Moreover, we show a preclinical rational for therapeutically testing WNT‐inhibitors in small cell cancers.</description><identifier>ISSN: 0020-7136</identifier><identifier>EISSN: 1097-0215</identifier><identifier>DOI: 10.1002/ijc.29835</identifier><identifier>PMID: 26340530</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>achaete‐scute homolog 1 ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Cancer ; Carcinoma, Neuroendocrine - genetics ; Carcinoma, Neuroendocrine - pathology ; DNA Mutational Analysis ; Flow Cytometry ; Fluorescent Antibody Technique ; High-Throughput Nucleotide Sequencing ; Humans ; Immunohistochemistry ; In Situ Hybridization, Fluorescence ; Kinases ; Lung cancer ; Lung Neoplasms - genetics ; Lung Neoplasms - pathology ; Medical research ; Molecular Cancer Biology ; Mutation ; neurogenic locus notch homolog ; Receptors, Notch - genetics ; Receptors, Notch - metabolism ; retinoblastoma protein ; Retinoblastoma Protein - genetics ; Signal Transduction ; small cell lung cancer ; Small Cell Lung Carcinoma - genetics ; Small Cell Lung Carcinoma - pathology ; Stem cells ; Transfection ; Tumor Suppressor Protein p53 - genetics ; Tumors</subject><ispartof>International journal of cancer, 2016-02, Vol.138 (4), p.927-938</ispartof><rights>2015 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC</rights><rights>2015 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.</rights><rights>2016 UICC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5795-6c680a8488353402804b1c37afb6c68d4ea20f7bf729ef38fffd032a975bc23e3</citedby><cites>FETCH-LOGICAL-c5795-6c680a8488353402804b1c37afb6c68d4ea20f7bf729ef38fffd032a975bc23e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fijc.29835$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fijc.29835$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26340530$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meder, Lydia</creatorcontrib><creatorcontrib>König, Katharina</creatorcontrib><creatorcontrib>Ozretić, Luka</creatorcontrib><creatorcontrib>Schultheis, Anne M.</creatorcontrib><creatorcontrib>Ueckeroth, Frank</creatorcontrib><creatorcontrib>Ade, Carsten P.</creatorcontrib><creatorcontrib>Albus, Kerstin</creatorcontrib><creatorcontrib>Boehm, Diana</creatorcontrib><creatorcontrib>Rommerscheidt‐Fuss, Ursula</creatorcontrib><creatorcontrib>Florin, Alexandra</creatorcontrib><creatorcontrib>Buhl, Theresa</creatorcontrib><creatorcontrib>Hartmann, Wolfgang</creatorcontrib><creatorcontrib>Wolf, Jürgen</creatorcontrib><creatorcontrib>Merkelbach‐Bruse, Sabine</creatorcontrib><creatorcontrib>Eilers, Martin</creatorcontrib><creatorcontrib>Perner, Sven</creatorcontrib><creatorcontrib>Heukamp, Lukas C.</creatorcontrib><creatorcontrib>Buettner, Reinhard</creatorcontrib><title>NOTCH, ASCL1, p53 and RB alterations define an alternative pathway driving neuroendocrine and small cell lung carcinomas</title><title>International journal of cancer</title><addtitle>Int J Cancer</addtitle><description>Small cell lung cancers (SCLCs) and extrapulmonary small cell cancers (SCCs) are very aggressive tumors arising de novo as primary small cell cancer with characteristic genetic lesions in RB1 and TP53. Based on murine models, neuroendocrine stem cells of the terminal bronchioli have been postulated as the cellular origin of primary SCLC. However, both in lung and many other organs, combined small cell/non‐small cell tumors and secondary transitions from non‐small cell carcinomas upon cancer therapy to neuroendocrine and small cell tumors occur. We define features of “small cell‐ness” based on neuroendocrine markers, characteristic RB1 and TP53 mutations and small cell morphology. Furthermore, here we identify a pathway driving the pathogenesis of secondary SCLC involving inactivating NOTCH mutations, activation of the NOTCH target ASCL1 and canonical WNT‐signaling in the context of mutual bi‐allelic RB1 and TP53 lesions. Additionaly, we explored ASCL1 dependent RB inactivation by phosphorylation, which is reversible by CDK5 inhibition. We experimentally verify the NOTCH‐ASCL1‐RB‐p53 signaling axis in vitro and validate its activation by genetic alterations in vivo. We analyzed clinical tumor samples including SCLC, SCC and pulmonary large cell neuroendocrine carcinomas and adenocarcinomas using amplicon‐based Next Generation Sequencing, immunohistochemistry and fluorescence in situ hybridization. In conclusion, we identified a novel pathway underlying rare secondary SCLC which may drive small cell carcinomas in organs other than lung, as well.
What's new?
Using next generation sequencing and establishing features of ‘small cell‐ness’, we identified a NOTCH‐ASCL1‐RB1‐TP53 signaling axis driving small cell cancers. In contrast to the previously described bi‐allelic RB1/TP53 loss in neuroendocrine stem cells as origin of primary small cell neuroendocrine cancers, the NOTCH‐ASCL1 mediated signaling defines an alternative pathway driving secondary small cell neuroendocrine cancers arising from non‐small cell cancers. Moreover, we show a preclinical rational for therapeutically testing WNT‐inhibitors in small cell cancers.</description><subject>achaete‐scute homolog 1</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Cancer</subject><subject>Carcinoma, Neuroendocrine - genetics</subject><subject>Carcinoma, Neuroendocrine - pathology</subject><subject>DNA Mutational Analysis</subject><subject>Flow Cytometry</subject><subject>Fluorescent Antibody Technique</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Kinases</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - genetics</subject><subject>Lung Neoplasms - pathology</subject><subject>Medical research</subject><subject>Molecular Cancer Biology</subject><subject>Mutation</subject><subject>neurogenic locus notch homolog</subject><subject>Receptors, Notch - genetics</subject><subject>Receptors, Notch - metabolism</subject><subject>retinoblastoma protein</subject><subject>Retinoblastoma Protein - genetics</subject><subject>Signal Transduction</subject><subject>small cell lung cancer</subject><subject>Small Cell Lung Carcinoma - genetics</subject><subject>Small Cell Lung Carcinoma - pathology</subject><subject>Stem cells</subject><subject>Transfection</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumors</subject><issn>0020-7136</issn><issn>1097-0215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kUtr3DAUhUVpaKZpF_0DRdBNC3FyJVmWvSmkQx8JQwN9rIUsS4kGW5pI9qTz76upk9AUupHgno_Dufcg9IrACQGgp26tT2hTM_4ELQg0ogBK-FO0yBoUgrDqED1PaQ1ACIfyGTqkFSuBM1igX18vfyy_HOOz78sVOcYbzrDyHf72Aat-NFGNLviEO2OdN1mZpz6PtwZv1Hh9q3a4i27r_BX2ZorB-C7oONMdToPqe6xNfvopI1pF7XwYVHqBDqzqk3l59x-hn58-5ijF6vLz-fJsVWguGl5UuqpB1WWdt8uZaQ1lSzQTyrZ7qSuNomBFawVtjGW1tbYDRlUjeKspM-wIvZ99N1M7mE4bP0bVy010g4o7GZSTjxXvruVV2MqyZpTVVTZ4e2cQw81k0igHl_YbKW_ClCQRFTQgGmgy-uYfdB2mfK1-T3HBgZeMZOrdTOkYUorGPoQhIPd9ytyn_NNnZl__nf6BvC8wA6czcOt6s_u_kzy_WM6WvwHsJ6nG</recordid><startdate>20160215</startdate><enddate>20160215</enddate><creator>Meder, Lydia</creator><creator>König, Katharina</creator><creator>Ozretić, Luka</creator><creator>Schultheis, Anne M.</creator><creator>Ueckeroth, Frank</creator><creator>Ade, Carsten P.</creator><creator>Albus, Kerstin</creator><creator>Boehm, Diana</creator><creator>Rommerscheidt‐Fuss, Ursula</creator><creator>Florin, Alexandra</creator><creator>Buhl, Theresa</creator><creator>Hartmann, Wolfgang</creator><creator>Wolf, Jürgen</creator><creator>Merkelbach‐Bruse, Sabine</creator><creator>Eilers, Martin</creator><creator>Perner, Sven</creator><creator>Heukamp, Lukas C.</creator><creator>Buettner, Reinhard</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160215</creationdate><title>NOTCH, ASCL1, p53 and RB alterations define an alternative pathway driving neuroendocrine and small cell lung carcinomas</title><author>Meder, Lydia ; König, Katharina ; Ozretić, Luka ; Schultheis, Anne M. ; Ueckeroth, Frank ; Ade, Carsten P. ; Albus, Kerstin ; Boehm, Diana ; Rommerscheidt‐Fuss, Ursula ; Florin, Alexandra ; Buhl, Theresa ; Hartmann, Wolfgang ; Wolf, Jürgen ; Merkelbach‐Bruse, Sabine ; Eilers, Martin ; Perner, Sven ; Heukamp, Lukas C. ; Buettner, Reinhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5795-6c680a8488353402804b1c37afb6c68d4ea20f7bf729ef38fffd032a975bc23e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>achaete‐scute homolog 1</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Cancer</topic><topic>Carcinoma, Neuroendocrine - genetics</topic><topic>Carcinoma, Neuroendocrine - pathology</topic><topic>DNA Mutational Analysis</topic><topic>Flow Cytometry</topic><topic>Fluorescent Antibody Technique</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Kinases</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - genetics</topic><topic>Lung Neoplasms - pathology</topic><topic>Medical research</topic><topic>Molecular Cancer Biology</topic><topic>Mutation</topic><topic>neurogenic locus notch homolog</topic><topic>Receptors, Notch - genetics</topic><topic>Receptors, Notch - metabolism</topic><topic>retinoblastoma protein</topic><topic>Retinoblastoma Protein - genetics</topic><topic>Signal Transduction</topic><topic>small cell lung cancer</topic><topic>Small Cell Lung Carcinoma - genetics</topic><topic>Small Cell Lung Carcinoma - pathology</topic><topic>Stem cells</topic><topic>Transfection</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meder, Lydia</creatorcontrib><creatorcontrib>König, Katharina</creatorcontrib><creatorcontrib>Ozretić, Luka</creatorcontrib><creatorcontrib>Schultheis, Anne M.</creatorcontrib><creatorcontrib>Ueckeroth, Frank</creatorcontrib><creatorcontrib>Ade, Carsten P.</creatorcontrib><creatorcontrib>Albus, Kerstin</creatorcontrib><creatorcontrib>Boehm, Diana</creatorcontrib><creatorcontrib>Rommerscheidt‐Fuss, Ursula</creatorcontrib><creatorcontrib>Florin, Alexandra</creatorcontrib><creatorcontrib>Buhl, Theresa</creatorcontrib><creatorcontrib>Hartmann, Wolfgang</creatorcontrib><creatorcontrib>Wolf, Jürgen</creatorcontrib><creatorcontrib>Merkelbach‐Bruse, Sabine</creatorcontrib><creatorcontrib>Eilers, Martin</creatorcontrib><creatorcontrib>Perner, Sven</creatorcontrib><creatorcontrib>Heukamp, Lukas C.</creatorcontrib><creatorcontrib>Buettner, Reinhard</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meder, Lydia</au><au>König, Katharina</au><au>Ozretić, Luka</au><au>Schultheis, Anne M.</au><au>Ueckeroth, Frank</au><au>Ade, Carsten P.</au><au>Albus, Kerstin</au><au>Boehm, Diana</au><au>Rommerscheidt‐Fuss, Ursula</au><au>Florin, Alexandra</au><au>Buhl, Theresa</au><au>Hartmann, Wolfgang</au><au>Wolf, Jürgen</au><au>Merkelbach‐Bruse, Sabine</au><au>Eilers, Martin</au><au>Perner, Sven</au><au>Heukamp, Lukas C.</au><au>Buettner, Reinhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NOTCH, ASCL1, p53 and RB alterations define an alternative pathway driving neuroendocrine and small cell lung carcinomas</atitle><jtitle>International journal of cancer</jtitle><addtitle>Int J Cancer</addtitle><date>2016-02-15</date><risdate>2016</risdate><volume>138</volume><issue>4</issue><spage>927</spage><epage>938</epage><pages>927-938</pages><issn>0020-7136</issn><eissn>1097-0215</eissn><abstract>Small cell lung cancers (SCLCs) and extrapulmonary small cell cancers (SCCs) are very aggressive tumors arising de novo as primary small cell cancer with characteristic genetic lesions in RB1 and TP53. Based on murine models, neuroendocrine stem cells of the terminal bronchioli have been postulated as the cellular origin of primary SCLC. However, both in lung and many other organs, combined small cell/non‐small cell tumors and secondary transitions from non‐small cell carcinomas upon cancer therapy to neuroendocrine and small cell tumors occur. We define features of “small cell‐ness” based on neuroendocrine markers, characteristic RB1 and TP53 mutations and small cell morphology. Furthermore, here we identify a pathway driving the pathogenesis of secondary SCLC involving inactivating NOTCH mutations, activation of the NOTCH target ASCL1 and canonical WNT‐signaling in the context of mutual bi‐allelic RB1 and TP53 lesions. Additionaly, we explored ASCL1 dependent RB inactivation by phosphorylation, which is reversible by CDK5 inhibition. We experimentally verify the NOTCH‐ASCL1‐RB‐p53 signaling axis in vitro and validate its activation by genetic alterations in vivo. We analyzed clinical tumor samples including SCLC, SCC and pulmonary large cell neuroendocrine carcinomas and adenocarcinomas using amplicon‐based Next Generation Sequencing, immunohistochemistry and fluorescence in situ hybridization. In conclusion, we identified a novel pathway underlying rare secondary SCLC which may drive small cell carcinomas in organs other than lung, as well.
What's new?
Using next generation sequencing and establishing features of ‘small cell‐ness’, we identified a NOTCH‐ASCL1‐RB1‐TP53 signaling axis driving small cell cancers. In contrast to the previously described bi‐allelic RB1/TP53 loss in neuroendocrine stem cells as origin of primary small cell neuroendocrine cancers, the NOTCH‐ASCL1 mediated signaling defines an alternative pathway driving secondary small cell neuroendocrine cancers arising from non‐small cell cancers. Moreover, we show a preclinical rational for therapeutically testing WNT‐inhibitors in small cell cancers.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>26340530</pmid><doi>10.1002/ijc.29835</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7136 |
ispartof | International journal of cancer, 2016-02, Vol.138 (4), p.927-938 |
issn | 0020-7136 1097-0215 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4832386 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | achaete‐scute homolog 1 Basic Helix-Loop-Helix Transcription Factors - metabolism Cancer Carcinoma, Neuroendocrine - genetics Carcinoma, Neuroendocrine - pathology DNA Mutational Analysis Flow Cytometry Fluorescent Antibody Technique High-Throughput Nucleotide Sequencing Humans Immunohistochemistry In Situ Hybridization, Fluorescence Kinases Lung cancer Lung Neoplasms - genetics Lung Neoplasms - pathology Medical research Molecular Cancer Biology Mutation neurogenic locus notch homolog Receptors, Notch - genetics Receptors, Notch - metabolism retinoblastoma protein Retinoblastoma Protein - genetics Signal Transduction small cell lung cancer Small Cell Lung Carcinoma - genetics Small Cell Lung Carcinoma - pathology Stem cells Transfection Tumor Suppressor Protein p53 - genetics Tumors |
title | NOTCH, ASCL1, p53 and RB alterations define an alternative pathway driving neuroendocrine and small cell lung carcinomas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NOTCH,%20ASCL1,%20p53%20and%20RB%20alterations%20define%20an%20alternative%20pathway%20driving%20neuroendocrine%20and%20small%20cell%20lung%20carcinomas&rft.jtitle=International%20journal%20of%20cancer&rft.au=Meder,%20Lydia&rft.date=2016-02-15&rft.volume=138&rft.issue=4&rft.spage=927&rft.epage=938&rft.pages=927-938&rft.issn=0020-7136&rft.eissn=1097-0215&rft_id=info:doi/10.1002/ijc.29835&rft_dat=%3Cproquest_pubme%3E1760907909%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1757505431&rft_id=info:pmid/26340530&rfr_iscdi=true |