Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells

Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glia 2016-01, Vol.64 (1), p.21-34
Hauptverfasser: Amaral, Ana I., Hadera, Mussie G., Tavares, Joana M., Kotter, Mark R. N., Sonnewald, Ursula
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 1
container_start_page 21
container_title Glia
container_volume 64
creator Amaral, Ana I.
Hadera, Mussie G.
Tavares, Joana M.
Kotter, Mark R. N.
Sonnewald, Ursula
description Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope‐labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2‐13C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1‐13C]lactate or [1,2‐13C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2‐13C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2‐13C]acetate and [1,2‐13C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS. GLIA 2016;64:21–34 Main Points Oligodendrocytes metabolise glucose via the pentose phosphate pathway to a similar extent as astrocytes. They have avid mitochondrial metabolism, can carboxylate pyruvate, decarboxylate malate and oxaloacetate and metabolise acetate in the mitochondria.
doi_str_mv 10.1002/glia.22900
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4832329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1776666551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6550-968c04c7c4ca97b0f3d2c596cad6bd5e6c55d0be7304e45312c2f3fdb2b854213</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhi0Eomnhwg9AK3FBlbb4Y23vXpCqQEMhfAiBOFpeezZx2KyD7aWEX4_TtBFwQPhiWX7m0cy8CD0i-IxgTJ8teqfPKG0wvoMmBDd1SQgTd9EE101VkqohR-g4xhXGJD_kfXREBeOUUT5Bq-lSB20SBPdTJ-eHwnfFoh-Nj1AG6HUCW6wh6db3zhQbnZZXehsLNxTWdR0EGJK7hoJORWYW3sJggzfbBEXvBtALKAz0fXyA7nW6j_Dw5j5Bny9efpq-KufvZ5fT83lpBOe4bERtcGWkqYxuZIs7ZqnhjTDaitZyEIZzi1uQDFdQcUaooR3rbEvbmleUsBP0fO_djO0arMkdBt2rTXBrHbbKa6f-_BncUi38d1XVLC-lyYKnN4Lgv40Qk1q7uBtBD-DHqIiUIh_OyX-gAtdCCrKzPvkLXfkxDHkTmeKSSlERkanTPWWCjzFAd-ibYLVLW-3SVtdpZ_jx75Me0Nt4M0D2wJXrYfsPlZrNL89vpeW-xsUEPw41OnxVQjLJ1Zd3M_WRvn7xdnrxRn1gvwCTC8ZW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757276416</pqid></control><display><type>article</type><title>Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Amaral, Ana I. ; Hadera, Mussie G. ; Tavares, Joana M. ; Kotter, Mark R. N. ; Sonnewald, Ursula</creator><creatorcontrib>Amaral, Ana I. ; Hadera, Mussie G. ; Tavares, Joana M. ; Kotter, Mark R. N. ; Sonnewald, Ursula</creatorcontrib><description>Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope‐labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2‐13C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1‐13C]lactate or [1,2‐13C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2‐13C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2‐13C]acetate and [1,2‐13C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS. GLIA 2016;64:21–34 Main Points Oligodendrocytes metabolise glucose via the pentose phosphate pathway to a similar extent as astrocytes. They have avid mitochondrial metabolism, can carboxylate pyruvate, decarboxylate malate and oxaloacetate and metabolise acetate in the mitochondria.</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.22900</identifier><identifier>PMID: 26352325</identifier><identifier>CODEN: GLIAEJ</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>13C ; acetate ; Acetates - metabolism ; Acetyl Coenzyme A - metabolism ; Animals ; Carbon Radioisotopes ; Cells, Cultured ; Citric Acid Cycle - physiology ; Cytosol - metabolism ; energy metabolism ; Glucose ; Glucose - metabolism ; glycolysis ; Labeling ; Lactic Acid - metabolism ; Malates - metabolism ; Metabolism ; Metabolites ; mitochondria ; Mitochondria - metabolism ; Neural Stem Cells - metabolism ; oligodendroglia ; Oligodendroglia - metabolism ; Oxaloacetic Acid - metabolism ; Pentose Phosphate Pathway - physiology ; Phosphoenolpyruvate - metabolism ; pyruvate carboxylation ; Pyruvic Acid - metabolism ; Radiopharmaceuticals ; Rats, Sprague-Dawley</subject><ispartof>Glia, 2016-01, Vol.64 (1), p.21-34</ispartof><rights>2015 The Authors. Glia Published by Wiley Periodicals, Inc.</rights><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6550-968c04c7c4ca97b0f3d2c596cad6bd5e6c55d0be7304e45312c2f3fdb2b854213</citedby><cites>FETCH-LOGICAL-c6550-968c04c7c4ca97b0f3d2c596cad6bd5e6c55d0be7304e45312c2f3fdb2b854213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fglia.22900$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fglia.22900$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26352325$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amaral, Ana I.</creatorcontrib><creatorcontrib>Hadera, Mussie G.</creatorcontrib><creatorcontrib>Tavares, Joana M.</creatorcontrib><creatorcontrib>Kotter, Mark R. N.</creatorcontrib><creatorcontrib>Sonnewald, Ursula</creatorcontrib><title>Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells</title><title>Glia</title><addtitle>Glia</addtitle><description>Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope‐labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2‐13C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1‐13C]lactate or [1,2‐13C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2‐13C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2‐13C]acetate and [1,2‐13C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS. GLIA 2016;64:21–34 Main Points Oligodendrocytes metabolise glucose via the pentose phosphate pathway to a similar extent as astrocytes. They have avid mitochondrial metabolism, can carboxylate pyruvate, decarboxylate malate and oxaloacetate and metabolise acetate in the mitochondria.</description><subject>13C</subject><subject>acetate</subject><subject>Acetates - metabolism</subject><subject>Acetyl Coenzyme A - metabolism</subject><subject>Animals</subject><subject>Carbon Radioisotopes</subject><subject>Cells, Cultured</subject><subject>Citric Acid Cycle - physiology</subject><subject>Cytosol - metabolism</subject><subject>energy metabolism</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>glycolysis</subject><subject>Labeling</subject><subject>Lactic Acid - metabolism</subject><subject>Malates - metabolism</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Neural Stem Cells - metabolism</subject><subject>oligodendroglia</subject><subject>Oligodendroglia - metabolism</subject><subject>Oxaloacetic Acid - metabolism</subject><subject>Pentose Phosphate Pathway - physiology</subject><subject>Phosphoenolpyruvate - metabolism</subject><subject>pyruvate carboxylation</subject><subject>Pyruvic Acid - metabolism</subject><subject>Radiopharmaceuticals</subject><subject>Rats, Sprague-Dawley</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU1vEzEQhi0Eomnhwg9AK3FBlbb4Y23vXpCqQEMhfAiBOFpeezZx2KyD7aWEX4_TtBFwQPhiWX7m0cy8CD0i-IxgTJ8teqfPKG0wvoMmBDd1SQgTd9EE101VkqohR-g4xhXGJD_kfXREBeOUUT5Bq-lSB20SBPdTJ-eHwnfFoh-Nj1AG6HUCW6wh6db3zhQbnZZXehsLNxTWdR0EGJK7hoJORWYW3sJggzfbBEXvBtALKAz0fXyA7nW6j_Dw5j5Bny9efpq-KufvZ5fT83lpBOe4bERtcGWkqYxuZIs7ZqnhjTDaitZyEIZzi1uQDFdQcUaooR3rbEvbmleUsBP0fO_djO0arMkdBt2rTXBrHbbKa6f-_BncUi38d1XVLC-lyYKnN4Lgv40Qk1q7uBtBD-DHqIiUIh_OyX-gAtdCCrKzPvkLXfkxDHkTmeKSSlERkanTPWWCjzFAd-ibYLVLW-3SVtdpZ_jx75Me0Nt4M0D2wJXrYfsPlZrNL89vpeW-xsUEPw41OnxVQjLJ1Zd3M_WRvn7xdnrxRn1gvwCTC8ZW</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Amaral, Ana I.</creator><creator>Hadera, Mussie G.</creator><creator>Tavares, Joana M.</creator><creator>Kotter, Mark R. N.</creator><creator>Sonnewald, Ursula</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201601</creationdate><title>Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells</title><author>Amaral, Ana I. ; Hadera, Mussie G. ; Tavares, Joana M. ; Kotter, Mark R. N. ; Sonnewald, Ursula</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6550-968c04c7c4ca97b0f3d2c596cad6bd5e6c55d0be7304e45312c2f3fdb2b854213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13C</topic><topic>acetate</topic><topic>Acetates - metabolism</topic><topic>Acetyl Coenzyme A - metabolism</topic><topic>Animals</topic><topic>Carbon Radioisotopes</topic><topic>Cells, Cultured</topic><topic>Citric Acid Cycle - physiology</topic><topic>Cytosol - metabolism</topic><topic>energy metabolism</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>glycolysis</topic><topic>Labeling</topic><topic>Lactic Acid - metabolism</topic><topic>Malates - metabolism</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Neural Stem Cells - metabolism</topic><topic>oligodendroglia</topic><topic>Oligodendroglia - metabolism</topic><topic>Oxaloacetic Acid - metabolism</topic><topic>Pentose Phosphate Pathway - physiology</topic><topic>Phosphoenolpyruvate - metabolism</topic><topic>pyruvate carboxylation</topic><topic>Pyruvic Acid - metabolism</topic><topic>Radiopharmaceuticals</topic><topic>Rats, Sprague-Dawley</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amaral, Ana I.</creatorcontrib><creatorcontrib>Hadera, Mussie G.</creatorcontrib><creatorcontrib>Tavares, Joana M.</creatorcontrib><creatorcontrib>Kotter, Mark R. N.</creatorcontrib><creatorcontrib>Sonnewald, Ursula</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amaral, Ana I.</au><au>Hadera, Mussie G.</au><au>Tavares, Joana M.</au><au>Kotter, Mark R. N.</au><au>Sonnewald, Ursula</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2016-01</date><risdate>2016</risdate><volume>64</volume><issue>1</issue><spage>21</spage><epage>34</epage><pages>21-34</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><coden>GLIAEJ</coden><abstract>Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope‐labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2‐13C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1‐13C]lactate or [1,2‐13C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2‐13C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2‐13C]acetate and [1,2‐13C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS. GLIA 2016;64:21–34 Main Points Oligodendrocytes metabolise glucose via the pentose phosphate pathway to a similar extent as astrocytes. They have avid mitochondrial metabolism, can carboxylate pyruvate, decarboxylate malate and oxaloacetate and metabolise acetate in the mitochondria.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26352325</pmid><doi>10.1002/glia.22900</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-1491
ispartof Glia, 2016-01, Vol.64 (1), p.21-34
issn 0894-1491
1098-1136
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4832329
source MEDLINE; Access via Wiley Online Library
subjects 13C
acetate
Acetates - metabolism
Acetyl Coenzyme A - metabolism
Animals
Carbon Radioisotopes
Cells, Cultured
Citric Acid Cycle - physiology
Cytosol - metabolism
energy metabolism
Glucose
Glucose - metabolism
glycolysis
Labeling
Lactic Acid - metabolism
Malates - metabolism
Metabolism
Metabolites
mitochondria
Mitochondria - metabolism
Neural Stem Cells - metabolism
oligodendroglia
Oligodendroglia - metabolism
Oxaloacetic Acid - metabolism
Pentose Phosphate Pathway - physiology
Phosphoenolpyruvate - metabolism
pyruvate carboxylation
Pyruvic Acid - metabolism
Radiopharmaceuticals
Rats, Sprague-Dawley
title Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20glucose-related%20metabolic%20pathways%20in%20differentiated%20rat%20oligodendrocyte%20lineage%20cells&rft.jtitle=Glia&rft.au=Amaral,%20Ana%20I.&rft.date=2016-01&rft.volume=64&rft.issue=1&rft.spage=21&rft.epage=34&rft.pages=21-34&rft.issn=0894-1491&rft.eissn=1098-1136&rft.coden=GLIAEJ&rft_id=info:doi/10.1002/glia.22900&rft_dat=%3Cproquest_pubme%3E1776666551%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1757276416&rft_id=info:pmid/26352325&rfr_iscdi=true