Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells
Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation...
Gespeichert in:
Veröffentlicht in: | Glia 2016-01, Vol.64 (1), p.21-34 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34 |
---|---|
container_issue | 1 |
container_start_page | 21 |
container_title | Glia |
container_volume | 64 |
creator | Amaral, Ana I. Hadera, Mussie G. Tavares, Joana M. Kotter, Mark R. N. Sonnewald, Ursula |
description | Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope‐labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2‐13C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1‐13C]lactate or [1,2‐13C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2‐13C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2‐13C]acetate and [1,2‐13C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS. GLIA 2016;64:21–34
Main Points
Oligodendrocytes metabolise glucose via the pentose phosphate pathway to a similar extent as astrocytes.
They have avid mitochondrial metabolism, can carboxylate pyruvate, decarboxylate malate and oxaloacetate and metabolise acetate in the mitochondria. |
doi_str_mv | 10.1002/glia.22900 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4832329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1776666551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6550-968c04c7c4ca97b0f3d2c596cad6bd5e6c55d0be7304e45312c2f3fdb2b854213</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhi0Eomnhwg9AK3FBlbb4Y23vXpCqQEMhfAiBOFpeezZx2KyD7aWEX4_TtBFwQPhiWX7m0cy8CD0i-IxgTJ8teqfPKG0wvoMmBDd1SQgTd9EE101VkqohR-g4xhXGJD_kfXREBeOUUT5Bq-lSB20SBPdTJ-eHwnfFoh-Nj1AG6HUCW6wh6db3zhQbnZZXehsLNxTWdR0EGJK7hoJORWYW3sJggzfbBEXvBtALKAz0fXyA7nW6j_Dw5j5Bny9efpq-KufvZ5fT83lpBOe4bERtcGWkqYxuZIs7ZqnhjTDaitZyEIZzi1uQDFdQcUaooR3rbEvbmleUsBP0fO_djO0arMkdBt2rTXBrHbbKa6f-_BncUi38d1XVLC-lyYKnN4Lgv40Qk1q7uBtBD-DHqIiUIh_OyX-gAtdCCrKzPvkLXfkxDHkTmeKSSlERkanTPWWCjzFAd-ibYLVLW-3SVtdpZ_jx75Me0Nt4M0D2wJXrYfsPlZrNL89vpeW-xsUEPw41OnxVQjLJ1Zd3M_WRvn7xdnrxRn1gvwCTC8ZW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757276416</pqid></control><display><type>article</type><title>Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Amaral, Ana I. ; Hadera, Mussie G. ; Tavares, Joana M. ; Kotter, Mark R. N. ; Sonnewald, Ursula</creator><creatorcontrib>Amaral, Ana I. ; Hadera, Mussie G. ; Tavares, Joana M. ; Kotter, Mark R. N. ; Sonnewald, Ursula</creatorcontrib><description>Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope‐labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2‐13C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1‐13C]lactate or [1,2‐13C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2‐13C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2‐13C]acetate and [1,2‐13C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS. GLIA 2016;64:21–34
Main Points
Oligodendrocytes metabolise glucose via the pentose phosphate pathway to a similar extent as astrocytes.
They have avid mitochondrial metabolism, can carboxylate pyruvate, decarboxylate malate and oxaloacetate and metabolise acetate in the mitochondria.</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.22900</identifier><identifier>PMID: 26352325</identifier><identifier>CODEN: GLIAEJ</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>13C ; acetate ; Acetates - metabolism ; Acetyl Coenzyme A - metabolism ; Animals ; Carbon Radioisotopes ; Cells, Cultured ; Citric Acid Cycle - physiology ; Cytosol - metabolism ; energy metabolism ; Glucose ; Glucose - metabolism ; glycolysis ; Labeling ; Lactic Acid - metabolism ; Malates - metabolism ; Metabolism ; Metabolites ; mitochondria ; Mitochondria - metabolism ; Neural Stem Cells - metabolism ; oligodendroglia ; Oligodendroglia - metabolism ; Oxaloacetic Acid - metabolism ; Pentose Phosphate Pathway - physiology ; Phosphoenolpyruvate - metabolism ; pyruvate carboxylation ; Pyruvic Acid - metabolism ; Radiopharmaceuticals ; Rats, Sprague-Dawley</subject><ispartof>Glia, 2016-01, Vol.64 (1), p.21-34</ispartof><rights>2015 The Authors. Glia Published by Wiley Periodicals, Inc.</rights><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6550-968c04c7c4ca97b0f3d2c596cad6bd5e6c55d0be7304e45312c2f3fdb2b854213</citedby><cites>FETCH-LOGICAL-c6550-968c04c7c4ca97b0f3d2c596cad6bd5e6c55d0be7304e45312c2f3fdb2b854213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fglia.22900$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fglia.22900$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26352325$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amaral, Ana I.</creatorcontrib><creatorcontrib>Hadera, Mussie G.</creatorcontrib><creatorcontrib>Tavares, Joana M.</creatorcontrib><creatorcontrib>Kotter, Mark R. N.</creatorcontrib><creatorcontrib>Sonnewald, Ursula</creatorcontrib><title>Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells</title><title>Glia</title><addtitle>Glia</addtitle><description>Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope‐labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2‐13C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1‐13C]lactate or [1,2‐13C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2‐13C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2‐13C]acetate and [1,2‐13C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS. GLIA 2016;64:21–34
Main Points
Oligodendrocytes metabolise glucose via the pentose phosphate pathway to a similar extent as astrocytes.
They have avid mitochondrial metabolism, can carboxylate pyruvate, decarboxylate malate and oxaloacetate and metabolise acetate in the mitochondria.</description><subject>13C</subject><subject>acetate</subject><subject>Acetates - metabolism</subject><subject>Acetyl Coenzyme A - metabolism</subject><subject>Animals</subject><subject>Carbon Radioisotopes</subject><subject>Cells, Cultured</subject><subject>Citric Acid Cycle - physiology</subject><subject>Cytosol - metabolism</subject><subject>energy metabolism</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>glycolysis</subject><subject>Labeling</subject><subject>Lactic Acid - metabolism</subject><subject>Malates - metabolism</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Neural Stem Cells - metabolism</subject><subject>oligodendroglia</subject><subject>Oligodendroglia - metabolism</subject><subject>Oxaloacetic Acid - metabolism</subject><subject>Pentose Phosphate Pathway - physiology</subject><subject>Phosphoenolpyruvate - metabolism</subject><subject>pyruvate carboxylation</subject><subject>Pyruvic Acid - metabolism</subject><subject>Radiopharmaceuticals</subject><subject>Rats, Sprague-Dawley</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU1vEzEQhi0Eomnhwg9AK3FBlbb4Y23vXpCqQEMhfAiBOFpeezZx2KyD7aWEX4_TtBFwQPhiWX7m0cy8CD0i-IxgTJ8teqfPKG0wvoMmBDd1SQgTd9EE101VkqohR-g4xhXGJD_kfXREBeOUUT5Bq-lSB20SBPdTJ-eHwnfFoh-Nj1AG6HUCW6wh6db3zhQbnZZXehsLNxTWdR0EGJK7hoJORWYW3sJggzfbBEXvBtALKAz0fXyA7nW6j_Dw5j5Bny9efpq-KufvZ5fT83lpBOe4bERtcGWkqYxuZIs7ZqnhjTDaitZyEIZzi1uQDFdQcUaooR3rbEvbmleUsBP0fO_djO0arMkdBt2rTXBrHbbKa6f-_BncUi38d1XVLC-lyYKnN4Lgv40Qk1q7uBtBD-DHqIiUIh_OyX-gAtdCCrKzPvkLXfkxDHkTmeKSSlERkanTPWWCjzFAd-ibYLVLW-3SVtdpZ_jx75Me0Nt4M0D2wJXrYfsPlZrNL89vpeW-xsUEPw41OnxVQjLJ1Zd3M_WRvn7xdnrxRn1gvwCTC8ZW</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Amaral, Ana I.</creator><creator>Hadera, Mussie G.</creator><creator>Tavares, Joana M.</creator><creator>Kotter, Mark R. N.</creator><creator>Sonnewald, Ursula</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201601</creationdate><title>Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells</title><author>Amaral, Ana I. ; Hadera, Mussie G. ; Tavares, Joana M. ; Kotter, Mark R. N. ; Sonnewald, Ursula</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6550-968c04c7c4ca97b0f3d2c596cad6bd5e6c55d0be7304e45312c2f3fdb2b854213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13C</topic><topic>acetate</topic><topic>Acetates - metabolism</topic><topic>Acetyl Coenzyme A - metabolism</topic><topic>Animals</topic><topic>Carbon Radioisotopes</topic><topic>Cells, Cultured</topic><topic>Citric Acid Cycle - physiology</topic><topic>Cytosol - metabolism</topic><topic>energy metabolism</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>glycolysis</topic><topic>Labeling</topic><topic>Lactic Acid - metabolism</topic><topic>Malates - metabolism</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Neural Stem Cells - metabolism</topic><topic>oligodendroglia</topic><topic>Oligodendroglia - metabolism</topic><topic>Oxaloacetic Acid - metabolism</topic><topic>Pentose Phosphate Pathway - physiology</topic><topic>Phosphoenolpyruvate - metabolism</topic><topic>pyruvate carboxylation</topic><topic>Pyruvic Acid - metabolism</topic><topic>Radiopharmaceuticals</topic><topic>Rats, Sprague-Dawley</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amaral, Ana I.</creatorcontrib><creatorcontrib>Hadera, Mussie G.</creatorcontrib><creatorcontrib>Tavares, Joana M.</creatorcontrib><creatorcontrib>Kotter, Mark R. N.</creatorcontrib><creatorcontrib>Sonnewald, Ursula</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amaral, Ana I.</au><au>Hadera, Mussie G.</au><au>Tavares, Joana M.</au><au>Kotter, Mark R. N.</au><au>Sonnewald, Ursula</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2016-01</date><risdate>2016</risdate><volume>64</volume><issue>1</issue><spage>21</spage><epage>34</epage><pages>21-34</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><coden>GLIAEJ</coden><abstract>Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope‐labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2‐13C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1‐13C]lactate or [1,2‐13C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2‐13C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2‐13C]acetate and [1,2‐13C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS. GLIA 2016;64:21–34
Main Points
Oligodendrocytes metabolise glucose via the pentose phosphate pathway to a similar extent as astrocytes.
They have avid mitochondrial metabolism, can carboxylate pyruvate, decarboxylate malate and oxaloacetate and metabolise acetate in the mitochondria.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26352325</pmid><doi>10.1002/glia.22900</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-1491 |
ispartof | Glia, 2016-01, Vol.64 (1), p.21-34 |
issn | 0894-1491 1098-1136 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4832329 |
source | MEDLINE; Access via Wiley Online Library |
subjects | 13C acetate Acetates - metabolism Acetyl Coenzyme A - metabolism Animals Carbon Radioisotopes Cells, Cultured Citric Acid Cycle - physiology Cytosol - metabolism energy metabolism Glucose Glucose - metabolism glycolysis Labeling Lactic Acid - metabolism Malates - metabolism Metabolism Metabolites mitochondria Mitochondria - metabolism Neural Stem Cells - metabolism oligodendroglia Oligodendroglia - metabolism Oxaloacetic Acid - metabolism Pentose Phosphate Pathway - physiology Phosphoenolpyruvate - metabolism pyruvate carboxylation Pyruvic Acid - metabolism Radiopharmaceuticals Rats, Sprague-Dawley |
title | Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20glucose-related%20metabolic%20pathways%20in%20differentiated%20rat%20oligodendrocyte%20lineage%20cells&rft.jtitle=Glia&rft.au=Amaral,%20Ana%20I.&rft.date=2016-01&rft.volume=64&rft.issue=1&rft.spage=21&rft.epage=34&rft.pages=21-34&rft.issn=0894-1491&rft.eissn=1098-1136&rft.coden=GLIAEJ&rft_id=info:doi/10.1002/glia.22900&rft_dat=%3Cproquest_pubme%3E1776666551%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1757276416&rft_id=info:pmid/26352325&rfr_iscdi=true |