Role of nucleotide‐binding oligomerization domain 1 (NOD1) in pericyte‐mediated vascular inflammation
We have recently described the response of human brain pericytes to lipopolysaccharide (LPS) through toll‐like receptor 4 (TLR4). However, Gram‐negative pathogen‐associated molecular patterns include not only LPS but also peptidoglycan (PGN). Given that the presence of co‐purified PGN in the LPS pre...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2016-05, Vol.20 (5), p.980-986 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 986 |
---|---|
container_issue | 5 |
container_start_page | 980 |
container_title | Journal of cellular and molecular medicine |
container_volume | 20 |
creator | Navarro, Rocío Delgado‐Wicke, Pablo Nuñez‐Prado, Natalia Compte, Marta Blanco‐Toribio, Ana Nuñez, Gabriel Álvarez‐Vallina, Luis Sanz, Laura |
description | We have recently described the response of human brain pericytes to lipopolysaccharide (LPS) through toll‐like receptor 4 (TLR4). However, Gram‐negative pathogen‐associated molecular patterns include not only LPS but also peptidoglycan (PGN). Given that the presence of co‐purified PGN in the LPS preparation previously used could not be ruled out, we decided to analyse the expression of the intracellular PGN receptors NOD1 and NOD2 in HBP and compare the responses to their cognate agonists and ultrapure LPS.
Our findings show for the first time that NOD1 is expressed in pericytes, whereas NOD2 expression is barely detectable. The NOD1 agonist C12‐iE‐DAP induced IL6 and IL8 gene expression by pericytes as well as release of cytokines into culture supernatant. Moreover, we demonstrated the synergistic effects of NOD1 and TLR4 agonists on the induction of IL8. Using NOD1 silencing in HBP, we showed a requirement for C12‐iE‐DAP‐dependent signalling. Finally, we could discriminate NOD1 and TLR4 pathways in pericytes by pharmacological targeting of RIPK2, a kinase involved in NOD1 but not in TLR4 signalling cascade. p38 MAPK and NF‐κB appear to be downstream mediators in the NOD1 pathway.
In summary, these results indicate that pericytes can sense Gram‐negative bacterial products by both NOD1 and TLR4 receptors, acting through distinct pathways. This provides new insight about how brain pericytes participate in the inflammatory response and may have implications for disease management. |
doi_str_mv | 10.1111/jcmm.12804 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4831361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2290147029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4484-61ef532a9711204e1fcf65000dd682a1e86172b1a7fdadb530efd09bfb0c035e3</originalsourceid><addsrcrecordid>eNp9kc2KFDEUhYMozti68QGkwM0o9JibpKpSG0Haf2YcEF2HVH7aNEmlJ6kaaVc-gs_ok5iabgd1YTa5cL57OMlB6CHgUyjn2UaFcAqEY3YLHUPNyZJ1lN0-zMApP0L3ct5gTBug3V10RJoO6rohx8h9jN5U0VbDpLyJo9Pm5_cfvRu0G9ZV9G4dg0numxxdHCodg3RDBdXJh4uX8KQq87aoajfOW8FoJ0ejqyuZ1eRlKrr1MoTr5fvojpU-mweHe4E-v371afV2eXbx5t3qxdlSMcbZsgFja0pk1wIQzAxYZZsaY6x1w4kEwxtoSQ-ytVrqvqbYWI273vZYYVobukDP977bqS-JlBnGJL3YJhdk2okonfhbGdwXsY5XgnEK8wct0MnBIMXLyeRRBJeV8V4OJk5ZQMtxXcLxrqCP_0E3cUpDeZ4gpMPAWkxm6umeUinmnIy9CQNYzA2KuUFx3WCBH_0Z_wb9XVkBYA98dd7s_mMl3q_Oz_emvwB2b6mL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290147029</pqid></control><display><type>article</type><title>Role of nucleotide‐binding oligomerization domain 1 (NOD1) in pericyte‐mediated vascular inflammation</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Navarro, Rocío ; Delgado‐Wicke, Pablo ; Nuñez‐Prado, Natalia ; Compte, Marta ; Blanco‐Toribio, Ana ; Nuñez, Gabriel ; Álvarez‐Vallina, Luis ; Sanz, Laura</creator><creatorcontrib>Navarro, Rocío ; Delgado‐Wicke, Pablo ; Nuñez‐Prado, Natalia ; Compte, Marta ; Blanco‐Toribio, Ana ; Nuñez, Gabriel ; Álvarez‐Vallina, Luis ; Sanz, Laura</creatorcontrib><description>We have recently described the response of human brain pericytes to lipopolysaccharide (LPS) through toll‐like receptor 4 (TLR4). However, Gram‐negative pathogen‐associated molecular patterns include not only LPS but also peptidoglycan (PGN). Given that the presence of co‐purified PGN in the LPS preparation previously used could not be ruled out, we decided to analyse the expression of the intracellular PGN receptors NOD1 and NOD2 in HBP and compare the responses to their cognate agonists and ultrapure LPS.
Our findings show for the first time that NOD1 is expressed in pericytes, whereas NOD2 expression is barely detectable. The NOD1 agonist C12‐iE‐DAP induced IL6 and IL8 gene expression by pericytes as well as release of cytokines into culture supernatant. Moreover, we demonstrated the synergistic effects of NOD1 and TLR4 agonists on the induction of IL8. Using NOD1 silencing in HBP, we showed a requirement for C12‐iE‐DAP‐dependent signalling. Finally, we could discriminate NOD1 and TLR4 pathways in pericytes by pharmacological targeting of RIPK2, a kinase involved in NOD1 but not in TLR4 signalling cascade. p38 MAPK and NF‐κB appear to be downstream mediators in the NOD1 pathway.
In summary, these results indicate that pericytes can sense Gram‐negative bacterial products by both NOD1 and TLR4 receptors, acting through distinct pathways. This provides new insight about how brain pericytes participate in the inflammatory response and may have implications for disease management.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.12804</identifier><identifier>PMID: 26915562</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Agonists ; Brain ; Brain - blood supply ; Brain - cytology ; Brain - metabolism ; Brain research ; Cerebral Arteries - cytology ; Cerebral Arteries - metabolism ; Cloning ; Cytokines ; Gene expression ; Gene Expression Regulation ; Gram-negative bacteria ; Human behavior ; Humans ; Inflammation ; Inflammatory response ; Interleukin 6 ; Interleukin 8 ; Interleukin-6 - biosynthesis ; Interleukin-6 - metabolism ; Interleukin-8 - biosynthesis ; Interleukin-8 - metabolism ; Kinases ; Laboratories ; lipopolysaccharide ; Lipopolysaccharides ; Lipopolysaccharides - pharmacology ; MAP kinase ; NF-kappa B - genetics ; NF-kappa B - metabolism ; NOD1 ; Nod1 protein ; Nod1 Signaling Adaptor Protein - genetics ; Nod1 Signaling Adaptor Protein - metabolism ; NOD2 protein ; Nod2 Signaling Adaptor Protein - deficiency ; Nod2 Signaling Adaptor Protein - genetics ; Oligomerization ; p38 Mitogen-Activated Protein Kinases - genetics ; p38 Mitogen-Activated Protein Kinases - metabolism ; peptidoglycan ; Peptidoglycan - pharmacology ; Peptidoglycans ; pericyte ; Pericytes ; Pericytes - cytology ; Pericytes - drug effects ; Pericytes - metabolism ; Primary Cell Culture ; R&D ; Receptor-Interacting Protein Serine-Threonine Kinase 2 - genetics ; Receptor-Interacting Protein Serine-Threonine Kinase 2 - metabolism ; Research & development ; Short Communication ; Short Communications ; Signal Transduction ; Synergistic effect ; TLR4 ; TLR4 protein ; Toll-Like Receptor 4 - genetics ; Toll-Like Receptor 4 - metabolism ; Toll-like receptors ; vascular biology</subject><ispartof>Journal of cellular and molecular medicine, 2016-05, Vol.20 (5), p.980-986</ispartof><rights>2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4484-61ef532a9711204e1fcf65000dd682a1e86172b1a7fdadb530efd09bfb0c035e3</citedby><cites>FETCH-LOGICAL-c4484-61ef532a9711204e1fcf65000dd682a1e86172b1a7fdadb530efd09bfb0c035e3</cites><orcidid>0000-0002-3119-3218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831361/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831361/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26915562$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Navarro, Rocío</creatorcontrib><creatorcontrib>Delgado‐Wicke, Pablo</creatorcontrib><creatorcontrib>Nuñez‐Prado, Natalia</creatorcontrib><creatorcontrib>Compte, Marta</creatorcontrib><creatorcontrib>Blanco‐Toribio, Ana</creatorcontrib><creatorcontrib>Nuñez, Gabriel</creatorcontrib><creatorcontrib>Álvarez‐Vallina, Luis</creatorcontrib><creatorcontrib>Sanz, Laura</creatorcontrib><title>Role of nucleotide‐binding oligomerization domain 1 (NOD1) in pericyte‐mediated vascular inflammation</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>We have recently described the response of human brain pericytes to lipopolysaccharide (LPS) through toll‐like receptor 4 (TLR4). However, Gram‐negative pathogen‐associated molecular patterns include not only LPS but also peptidoglycan (PGN). Given that the presence of co‐purified PGN in the LPS preparation previously used could not be ruled out, we decided to analyse the expression of the intracellular PGN receptors NOD1 and NOD2 in HBP and compare the responses to their cognate agonists and ultrapure LPS.
Our findings show for the first time that NOD1 is expressed in pericytes, whereas NOD2 expression is barely detectable. The NOD1 agonist C12‐iE‐DAP induced IL6 and IL8 gene expression by pericytes as well as release of cytokines into culture supernatant. Moreover, we demonstrated the synergistic effects of NOD1 and TLR4 agonists on the induction of IL8. Using NOD1 silencing in HBP, we showed a requirement for C12‐iE‐DAP‐dependent signalling. Finally, we could discriminate NOD1 and TLR4 pathways in pericytes by pharmacological targeting of RIPK2, a kinase involved in NOD1 but not in TLR4 signalling cascade. p38 MAPK and NF‐κB appear to be downstream mediators in the NOD1 pathway.
In summary, these results indicate that pericytes can sense Gram‐negative bacterial products by both NOD1 and TLR4 receptors, acting through distinct pathways. This provides new insight about how brain pericytes participate in the inflammatory response and may have implications for disease management.</description><subject>Agonists</subject><subject>Brain</subject><subject>Brain - blood supply</subject><subject>Brain - cytology</subject><subject>Brain - metabolism</subject><subject>Brain research</subject><subject>Cerebral Arteries - cytology</subject><subject>Cerebral Arteries - metabolism</subject><subject>Cloning</subject><subject>Cytokines</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Gram-negative bacteria</subject><subject>Human behavior</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Inflammatory response</subject><subject>Interleukin 6</subject><subject>Interleukin 8</subject><subject>Interleukin-6 - biosynthesis</subject><subject>Interleukin-6 - metabolism</subject><subject>Interleukin-8 - biosynthesis</subject><subject>Interleukin-8 - metabolism</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>lipopolysaccharide</subject><subject>Lipopolysaccharides</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>MAP kinase</subject><subject>NF-kappa B - genetics</subject><subject>NF-kappa B - metabolism</subject><subject>NOD1</subject><subject>Nod1 protein</subject><subject>Nod1 Signaling Adaptor Protein - genetics</subject><subject>Nod1 Signaling Adaptor Protein - metabolism</subject><subject>NOD2 protein</subject><subject>Nod2 Signaling Adaptor Protein - deficiency</subject><subject>Nod2 Signaling Adaptor Protein - genetics</subject><subject>Oligomerization</subject><subject>p38 Mitogen-Activated Protein Kinases - genetics</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>peptidoglycan</subject><subject>Peptidoglycan - pharmacology</subject><subject>Peptidoglycans</subject><subject>pericyte</subject><subject>Pericytes</subject><subject>Pericytes - cytology</subject><subject>Pericytes - drug effects</subject><subject>Pericytes - metabolism</subject><subject>Primary Cell Culture</subject><subject>R&D</subject><subject>Receptor-Interacting Protein Serine-Threonine Kinase 2 - genetics</subject><subject>Receptor-Interacting Protein Serine-Threonine Kinase 2 - metabolism</subject><subject>Research & development</subject><subject>Short Communication</subject><subject>Short Communications</subject><subject>Signal Transduction</subject><subject>Synergistic effect</subject><subject>TLR4</subject><subject>TLR4 protein</subject><subject>Toll-Like Receptor 4 - genetics</subject><subject>Toll-Like Receptor 4 - metabolism</subject><subject>Toll-like receptors</subject><subject>vascular biology</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc2KFDEUhYMozti68QGkwM0o9JibpKpSG0Haf2YcEF2HVH7aNEmlJ6kaaVc-gs_ok5iabgd1YTa5cL57OMlB6CHgUyjn2UaFcAqEY3YLHUPNyZJ1lN0-zMApP0L3ct5gTBug3V10RJoO6rohx8h9jN5U0VbDpLyJo9Pm5_cfvRu0G9ZV9G4dg0numxxdHCodg3RDBdXJh4uX8KQq87aoajfOW8FoJ0ejqyuZ1eRlKrr1MoTr5fvojpU-mweHe4E-v371afV2eXbx5t3qxdlSMcbZsgFja0pk1wIQzAxYZZsaY6x1w4kEwxtoSQ-ytVrqvqbYWI273vZYYVobukDP977bqS-JlBnGJL3YJhdk2okonfhbGdwXsY5XgnEK8wct0MnBIMXLyeRRBJeV8V4OJk5ZQMtxXcLxrqCP_0E3cUpDeZ4gpMPAWkxm6umeUinmnIy9CQNYzA2KuUFx3WCBH_0Z_wb9XVkBYA98dd7s_mMl3q_Oz_emvwB2b6mL</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Navarro, Rocío</creator><creator>Delgado‐Wicke, Pablo</creator><creator>Nuñez‐Prado, Natalia</creator><creator>Compte, Marta</creator><creator>Blanco‐Toribio, Ana</creator><creator>Nuñez, Gabriel</creator><creator>Álvarez‐Vallina, Luis</creator><creator>Sanz, Laura</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3119-3218</orcidid></search><sort><creationdate>201605</creationdate><title>Role of nucleotide‐binding oligomerization domain 1 (NOD1) in pericyte‐mediated vascular inflammation</title><author>Navarro, Rocío ; Delgado‐Wicke, Pablo ; Nuñez‐Prado, Natalia ; Compte, Marta ; Blanco‐Toribio, Ana ; Nuñez, Gabriel ; Álvarez‐Vallina, Luis ; Sanz, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4484-61ef532a9711204e1fcf65000dd682a1e86172b1a7fdadb530efd09bfb0c035e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agonists</topic><topic>Brain</topic><topic>Brain - blood supply</topic><topic>Brain - cytology</topic><topic>Brain - metabolism</topic><topic>Brain research</topic><topic>Cerebral Arteries - cytology</topic><topic>Cerebral Arteries - metabolism</topic><topic>Cloning</topic><topic>Cytokines</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Gram-negative bacteria</topic><topic>Human behavior</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Inflammatory response</topic><topic>Interleukin 6</topic><topic>Interleukin 8</topic><topic>Interleukin-6 - biosynthesis</topic><topic>Interleukin-6 - metabolism</topic><topic>Interleukin-8 - biosynthesis</topic><topic>Interleukin-8 - metabolism</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>lipopolysaccharide</topic><topic>Lipopolysaccharides</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>MAP kinase</topic><topic>NF-kappa B - genetics</topic><topic>NF-kappa B - metabolism</topic><topic>NOD1</topic><topic>Nod1 protein</topic><topic>Nod1 Signaling Adaptor Protein - genetics</topic><topic>Nod1 Signaling Adaptor Protein - metabolism</topic><topic>NOD2 protein</topic><topic>Nod2 Signaling Adaptor Protein - deficiency</topic><topic>Nod2 Signaling Adaptor Protein - genetics</topic><topic>Oligomerization</topic><topic>p38 Mitogen-Activated Protein Kinases - genetics</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>peptidoglycan</topic><topic>Peptidoglycan - pharmacology</topic><topic>Peptidoglycans</topic><topic>pericyte</topic><topic>Pericytes</topic><topic>Pericytes - cytology</topic><topic>Pericytes - drug effects</topic><topic>Pericytes - metabolism</topic><topic>Primary Cell Culture</topic><topic>R&D</topic><topic>Receptor-Interacting Protein Serine-Threonine Kinase 2 - genetics</topic><topic>Receptor-Interacting Protein Serine-Threonine Kinase 2 - metabolism</topic><topic>Research & development</topic><topic>Short Communication</topic><topic>Short Communications</topic><topic>Signal Transduction</topic><topic>Synergistic effect</topic><topic>TLR4</topic><topic>TLR4 protein</topic><topic>Toll-Like Receptor 4 - genetics</topic><topic>Toll-Like Receptor 4 - metabolism</topic><topic>Toll-like receptors</topic><topic>vascular biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navarro, Rocío</creatorcontrib><creatorcontrib>Delgado‐Wicke, Pablo</creatorcontrib><creatorcontrib>Nuñez‐Prado, Natalia</creatorcontrib><creatorcontrib>Compte, Marta</creatorcontrib><creatorcontrib>Blanco‐Toribio, Ana</creatorcontrib><creatorcontrib>Nuñez, Gabriel</creatorcontrib><creatorcontrib>Álvarez‐Vallina, Luis</creatorcontrib><creatorcontrib>Sanz, Laura</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navarro, Rocío</au><au>Delgado‐Wicke, Pablo</au><au>Nuñez‐Prado, Natalia</au><au>Compte, Marta</au><au>Blanco‐Toribio, Ana</au><au>Nuñez, Gabriel</au><au>Álvarez‐Vallina, Luis</au><au>Sanz, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of nucleotide‐binding oligomerization domain 1 (NOD1) in pericyte‐mediated vascular inflammation</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2016-05</date><risdate>2016</risdate><volume>20</volume><issue>5</issue><spage>980</spage><epage>986</epage><pages>980-986</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>We have recently described the response of human brain pericytes to lipopolysaccharide (LPS) through toll‐like receptor 4 (TLR4). However, Gram‐negative pathogen‐associated molecular patterns include not only LPS but also peptidoglycan (PGN). Given that the presence of co‐purified PGN in the LPS preparation previously used could not be ruled out, we decided to analyse the expression of the intracellular PGN receptors NOD1 and NOD2 in HBP and compare the responses to their cognate agonists and ultrapure LPS.
Our findings show for the first time that NOD1 is expressed in pericytes, whereas NOD2 expression is barely detectable. The NOD1 agonist C12‐iE‐DAP induced IL6 and IL8 gene expression by pericytes as well as release of cytokines into culture supernatant. Moreover, we demonstrated the synergistic effects of NOD1 and TLR4 agonists on the induction of IL8. Using NOD1 silencing in HBP, we showed a requirement for C12‐iE‐DAP‐dependent signalling. Finally, we could discriminate NOD1 and TLR4 pathways in pericytes by pharmacological targeting of RIPK2, a kinase involved in NOD1 but not in TLR4 signalling cascade. p38 MAPK and NF‐κB appear to be downstream mediators in the NOD1 pathway.
In summary, these results indicate that pericytes can sense Gram‐negative bacterial products by both NOD1 and TLR4 receptors, acting through distinct pathways. This provides new insight about how brain pericytes participate in the inflammatory response and may have implications for disease management.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>26915562</pmid><doi>10.1111/jcmm.12804</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3119-3218</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2016-05, Vol.20 (5), p.980-986 |
issn | 1582-1838 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4831361 |
source | MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Agonists Brain Brain - blood supply Brain - cytology Brain - metabolism Brain research Cerebral Arteries - cytology Cerebral Arteries - metabolism Cloning Cytokines Gene expression Gene Expression Regulation Gram-negative bacteria Human behavior Humans Inflammation Inflammatory response Interleukin 6 Interleukin 8 Interleukin-6 - biosynthesis Interleukin-6 - metabolism Interleukin-8 - biosynthesis Interleukin-8 - metabolism Kinases Laboratories lipopolysaccharide Lipopolysaccharides Lipopolysaccharides - pharmacology MAP kinase NF-kappa B - genetics NF-kappa B - metabolism NOD1 Nod1 protein Nod1 Signaling Adaptor Protein - genetics Nod1 Signaling Adaptor Protein - metabolism NOD2 protein Nod2 Signaling Adaptor Protein - deficiency Nod2 Signaling Adaptor Protein - genetics Oligomerization p38 Mitogen-Activated Protein Kinases - genetics p38 Mitogen-Activated Protein Kinases - metabolism peptidoglycan Peptidoglycan - pharmacology Peptidoglycans pericyte Pericytes Pericytes - cytology Pericytes - drug effects Pericytes - metabolism Primary Cell Culture R&D Receptor-Interacting Protein Serine-Threonine Kinase 2 - genetics Receptor-Interacting Protein Serine-Threonine Kinase 2 - metabolism Research & development Short Communication Short Communications Signal Transduction Synergistic effect TLR4 TLR4 protein Toll-Like Receptor 4 - genetics Toll-Like Receptor 4 - metabolism Toll-like receptors vascular biology |
title | Role of nucleotide‐binding oligomerization domain 1 (NOD1) in pericyte‐mediated vascular inflammation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20nucleotide%E2%80%90binding%20oligomerization%20domain%201%20(NOD1)%20in%20pericyte%E2%80%90mediated%20vascular%20inflammation&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Navarro,%20Roc%C3%ADo&rft.date=2016-05&rft.volume=20&rft.issue=5&rft.spage=980&rft.epage=986&rft.pages=980-986&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.12804&rft_dat=%3Cproquest_pubme%3E2290147029%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2290147029&rft_id=info:pmid/26915562&rfr_iscdi=true |