Mechanism of the AppABLUF Photocycle Probed by Site-Specific Incorporation of Fluorotyrosine Residues: Effect of the Y21 pKa on the Forward and Reverse Ground-State Reactions

The transcriptional antirepressor AppA is a blue light using flavin (BLUF) photoreceptor that releases the transcriptional repressor PpsR upon photoexcitation. Light activation of AppA involves changes in a hydrogen-bonding network that surrounds the flavin chromophore on the nanosecond time scale,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2016-01, Vol.138 (3), p.926-935
Hauptverfasser: Gil, Agnieszka, Haigney, Allison, Laptenok, Sergey P, Brust, Richard, Lukacs, Andras, Iuliano, James, Jeng, Jessica, Melief, Eduard, Zhao, Rui-Kun, Yoon, EunBin, Clark, Ian, Towrie, Michael, Greetham, Gregory M, Ng, Annabelle, Truglio, James, French, Jarrod, Meech, Stephen R, Tonge, Peter J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 935
container_issue 3
container_start_page 926
container_title Journal of the American Chemical Society
container_volume 138
creator Gil, Agnieszka
Haigney, Allison
Laptenok, Sergey P
Brust, Richard
Lukacs, Andras
Iuliano, James
Jeng, Jessica
Melief, Eduard
Zhao, Rui-Kun
Yoon, EunBin
Clark, Ian
Towrie, Michael
Greetham, Gregory M
Ng, Annabelle
Truglio, James
French, Jarrod
Meech, Stephen R
Tonge, Peter J
description The transcriptional antirepressor AppA is a blue light using flavin (BLUF) photoreceptor that releases the transcriptional repressor PpsR upon photoexcitation. Light activation of AppA involves changes in a hydrogen-bonding network that surrounds the flavin chromophore on the nanosecond time scale, while the dark state of AppA is then recovered in a light-independent reaction with a dramatically longer half-life of 15 min. Residue Y21, a component of the hydrogen-bonding network, is known to be essential for photoactivity. Here, we directly explore the effect of the Y21 pKa on dark state recovery by replacing Y21 with fluorotyrosine analogues that increase the acidity of Y21 by 3.5 pH units. Ultrafast transient infrared measurements confirm that the structure of AppA is unperturbed by fluorotyrosine substitution, and that there is a small (3-fold) change in the photokinetics of the forward reaction over the fluorotyrosine series. However, reduction of 3.5 pH units in the pKa of Y21 increases the rate of dark state recovery by 4000-fold with a Brønsted coefficient of ∼ 1, indicating that the Y21 proton is completely transferred in the transition state leading from light to dark adapted AppA. A large solvent isotope effect of ∼ 6-8 is also observed on the rate of dark state recovery. These data establish that the acidity of Y21 is a crucial factor for stabilizing the light activated form of the protein, and have been used to propose a model for dark state recovery that will ultimately prove useful for tuning the properties of BLUF photosensors for optogenetic applications.
doi_str_mv 10.1021/jacs.5b11115
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4830125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1761081823</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3185-f5658965aaedba2de492372b623d441c3471730f526f11fc915a7066ff8fa2713</originalsourceid><addsrcrecordid>eNqFkcFuFDEMhkeoiJbCjTPKsZcpcTLJzHJA2lbdtmIRFUsPnEaZxGGzmk2mSaZoX6rPyKxoUTnhi23592fLLop3QE-BMviwUTqdig4mEy-KIxCMlgKYPHgWHxavU9pQSivWwKvikMmaNhVtjoqHL6jXyru0JcGSvEYyH4b52fJ2QW7WIQe90z2Smxg6NKTbkZXLWK4G1M46Ta69DnEIUWUX_B6w6McQQ97FkJxH8g2TMyOmj-TCWtT5acYPBmT4rMjUtE8XIf5S0RDlzdRyjzEhuYxh9KZcZZX3HKX3I9Kb4qVVfcK3j_64uF1cfD-_KpdfL6_P58tyw6ERpRVSNDMplELTKWawmjFes04ybqoKNK9qqDm1gkkLYPUMhKqplNY2VrEa-HHx6Q93GLstGo0-R9W3Q3RbFXdtUK79t-Lduv0Z7tuq4RSYmAAnj4AY7qYL5Hbrksa-Vx7DmFo2PYPPBJ30_5NCLYE20DA-Sd8_X-vvPk__5L8B802jrQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1761081823</pqid></control><display><type>article</type><title>Mechanism of the AppABLUF Photocycle Probed by Site-Specific Incorporation of Fluorotyrosine Residues: Effect of the Y21 pKa on the Forward and Reverse Ground-State Reactions</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Gil, Agnieszka ; Haigney, Allison ; Laptenok, Sergey P ; Brust, Richard ; Lukacs, Andras ; Iuliano, James ; Jeng, Jessica ; Melief, Eduard ; Zhao, Rui-Kun ; Yoon, EunBin ; Clark, Ian ; Towrie, Michael ; Greetham, Gregory M ; Ng, Annabelle ; Truglio, James ; French, Jarrod ; Meech, Stephen R ; Tonge, Peter J</creator><creatorcontrib>Gil, Agnieszka ; Haigney, Allison ; Laptenok, Sergey P ; Brust, Richard ; Lukacs, Andras ; Iuliano, James ; Jeng, Jessica ; Melief, Eduard ; Zhao, Rui-Kun ; Yoon, EunBin ; Clark, Ian ; Towrie, Michael ; Greetham, Gregory M ; Ng, Annabelle ; Truglio, James ; French, Jarrod ; Meech, Stephen R ; Tonge, Peter J</creatorcontrib><description>The transcriptional antirepressor AppA is a blue light using flavin (BLUF) photoreceptor that releases the transcriptional repressor PpsR upon photoexcitation. Light activation of AppA involves changes in a hydrogen-bonding network that surrounds the flavin chromophore on the nanosecond time scale, while the dark state of AppA is then recovered in a light-independent reaction with a dramatically longer half-life of 15 min. Residue Y21, a component of the hydrogen-bonding network, is known to be essential for photoactivity. Here, we directly explore the effect of the Y21 pKa on dark state recovery by replacing Y21 with fluorotyrosine analogues that increase the acidity of Y21 by 3.5 pH units. Ultrafast transient infrared measurements confirm that the structure of AppA is unperturbed by fluorotyrosine substitution, and that there is a small (3-fold) change in the photokinetics of the forward reaction over the fluorotyrosine series. However, reduction of 3.5 pH units in the pKa of Y21 increases the rate of dark state recovery by 4000-fold with a Brønsted coefficient of ∼ 1, indicating that the Y21 proton is completely transferred in the transition state leading from light to dark adapted AppA. A large solvent isotope effect of ∼ 6-8 is also observed on the rate of dark state recovery. These data establish that the acidity of Y21 is a crucial factor for stabilizing the light activated form of the protein, and have been used to propose a model for dark state recovery that will ultimately prove useful for tuning the properties of BLUF photosensors for optogenetic applications.</description><identifier>ISSN: 1520-5126</identifier><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b11115</identifier><identifier>PMID: 26708408</identifier><language>eng</language><publisher>United States</publisher><subject>acidity ; Bacterial Proteins - chemistry ; blue light ; Flavoproteins - chemistry ; Fluorine - chemistry ; half life ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; isotopes ; Models, Molecular ; Molecular Structure ; optogenetics ; Photochemical Processes ; photoreceptors ; Quantum Theory ; repressor proteins ; solvents ; transcription (genetics) ; Tyrosine - analogs &amp; derivatives ; Tyrosine - chemistry</subject><ispartof>Journal of the American Chemical Society, 2016-01, Vol.138 (3), p.926-935</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26708408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gil, Agnieszka</creatorcontrib><creatorcontrib>Haigney, Allison</creatorcontrib><creatorcontrib>Laptenok, Sergey P</creatorcontrib><creatorcontrib>Brust, Richard</creatorcontrib><creatorcontrib>Lukacs, Andras</creatorcontrib><creatorcontrib>Iuliano, James</creatorcontrib><creatorcontrib>Jeng, Jessica</creatorcontrib><creatorcontrib>Melief, Eduard</creatorcontrib><creatorcontrib>Zhao, Rui-Kun</creatorcontrib><creatorcontrib>Yoon, EunBin</creatorcontrib><creatorcontrib>Clark, Ian</creatorcontrib><creatorcontrib>Towrie, Michael</creatorcontrib><creatorcontrib>Greetham, Gregory M</creatorcontrib><creatorcontrib>Ng, Annabelle</creatorcontrib><creatorcontrib>Truglio, James</creatorcontrib><creatorcontrib>French, Jarrod</creatorcontrib><creatorcontrib>Meech, Stephen R</creatorcontrib><creatorcontrib>Tonge, Peter J</creatorcontrib><title>Mechanism of the AppABLUF Photocycle Probed by Site-Specific Incorporation of Fluorotyrosine Residues: Effect of the Y21 pKa on the Forward and Reverse Ground-State Reactions</title><title>Journal of the American Chemical Society</title><addtitle>J Am Chem Soc</addtitle><description>The transcriptional antirepressor AppA is a blue light using flavin (BLUF) photoreceptor that releases the transcriptional repressor PpsR upon photoexcitation. Light activation of AppA involves changes in a hydrogen-bonding network that surrounds the flavin chromophore on the nanosecond time scale, while the dark state of AppA is then recovered in a light-independent reaction with a dramatically longer half-life of 15 min. Residue Y21, a component of the hydrogen-bonding network, is known to be essential for photoactivity. Here, we directly explore the effect of the Y21 pKa on dark state recovery by replacing Y21 with fluorotyrosine analogues that increase the acidity of Y21 by 3.5 pH units. Ultrafast transient infrared measurements confirm that the structure of AppA is unperturbed by fluorotyrosine substitution, and that there is a small (3-fold) change in the photokinetics of the forward reaction over the fluorotyrosine series. However, reduction of 3.5 pH units in the pKa of Y21 increases the rate of dark state recovery by 4000-fold with a Brønsted coefficient of ∼ 1, indicating that the Y21 proton is completely transferred in the transition state leading from light to dark adapted AppA. A large solvent isotope effect of ∼ 6-8 is also observed on the rate of dark state recovery. These data establish that the acidity of Y21 is a crucial factor for stabilizing the light activated form of the protein, and have been used to propose a model for dark state recovery that will ultimately prove useful for tuning the properties of BLUF photosensors for optogenetic applications.</description><subject>acidity</subject><subject>Bacterial Proteins - chemistry</subject><subject>blue light</subject><subject>Flavoproteins - chemistry</subject><subject>Fluorine - chemistry</subject><subject>half life</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen-Ion Concentration</subject><subject>isotopes</subject><subject>Models, Molecular</subject><subject>Molecular Structure</subject><subject>optogenetics</subject><subject>Photochemical Processes</subject><subject>photoreceptors</subject><subject>Quantum Theory</subject><subject>repressor proteins</subject><subject>solvents</subject><subject>transcription (genetics)</subject><subject>Tyrosine - analogs &amp; derivatives</subject><subject>Tyrosine - chemistry</subject><issn>1520-5126</issn><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFuFDEMhkeoiJbCjTPKsZcpcTLJzHJA2lbdtmIRFUsPnEaZxGGzmk2mSaZoX6rPyKxoUTnhi23592fLLop3QE-BMviwUTqdig4mEy-KIxCMlgKYPHgWHxavU9pQSivWwKvikMmaNhVtjoqHL6jXyru0JcGSvEYyH4b52fJ2QW7WIQe90z2Smxg6NKTbkZXLWK4G1M46Ta69DnEIUWUX_B6w6McQQ97FkJxH8g2TMyOmj-TCWtT5acYPBmT4rMjUtE8XIf5S0RDlzdRyjzEhuYxh9KZcZZX3HKX3I9Kb4qVVfcK3j_64uF1cfD-_KpdfL6_P58tyw6ERpRVSNDMplELTKWawmjFes04ybqoKNK9qqDm1gkkLYPUMhKqplNY2VrEa-HHx6Q93GLstGo0-R9W3Q3RbFXdtUK79t-Lduv0Z7tuq4RSYmAAnj4AY7qYL5Hbrksa-Vx7DmFo2PYPPBJ30_5NCLYE20DA-Sd8_X-vvPk__5L8B802jrQ</recordid><startdate>20160127</startdate><enddate>20160127</enddate><creator>Gil, Agnieszka</creator><creator>Haigney, Allison</creator><creator>Laptenok, Sergey P</creator><creator>Brust, Richard</creator><creator>Lukacs, Andras</creator><creator>Iuliano, James</creator><creator>Jeng, Jessica</creator><creator>Melief, Eduard</creator><creator>Zhao, Rui-Kun</creator><creator>Yoon, EunBin</creator><creator>Clark, Ian</creator><creator>Towrie, Michael</creator><creator>Greetham, Gregory M</creator><creator>Ng, Annabelle</creator><creator>Truglio, James</creator><creator>French, Jarrod</creator><creator>Meech, Stephen R</creator><creator>Tonge, Peter J</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20160127</creationdate><title>Mechanism of the AppABLUF Photocycle Probed by Site-Specific Incorporation of Fluorotyrosine Residues: Effect of the Y21 pKa on the Forward and Reverse Ground-State Reactions</title><author>Gil, Agnieszka ; Haigney, Allison ; Laptenok, Sergey P ; Brust, Richard ; Lukacs, Andras ; Iuliano, James ; Jeng, Jessica ; Melief, Eduard ; Zhao, Rui-Kun ; Yoon, EunBin ; Clark, Ian ; Towrie, Michael ; Greetham, Gregory M ; Ng, Annabelle ; Truglio, James ; French, Jarrod ; Meech, Stephen R ; Tonge, Peter J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3185-f5658965aaedba2de492372b623d441c3471730f526f11fc915a7066ff8fa2713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>acidity</topic><topic>Bacterial Proteins - chemistry</topic><topic>blue light</topic><topic>Flavoproteins - chemistry</topic><topic>Fluorine - chemistry</topic><topic>half life</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen-Ion Concentration</topic><topic>isotopes</topic><topic>Models, Molecular</topic><topic>Molecular Structure</topic><topic>optogenetics</topic><topic>Photochemical Processes</topic><topic>photoreceptors</topic><topic>Quantum Theory</topic><topic>repressor proteins</topic><topic>solvents</topic><topic>transcription (genetics)</topic><topic>Tyrosine - analogs &amp; derivatives</topic><topic>Tyrosine - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gil, Agnieszka</creatorcontrib><creatorcontrib>Haigney, Allison</creatorcontrib><creatorcontrib>Laptenok, Sergey P</creatorcontrib><creatorcontrib>Brust, Richard</creatorcontrib><creatorcontrib>Lukacs, Andras</creatorcontrib><creatorcontrib>Iuliano, James</creatorcontrib><creatorcontrib>Jeng, Jessica</creatorcontrib><creatorcontrib>Melief, Eduard</creatorcontrib><creatorcontrib>Zhao, Rui-Kun</creatorcontrib><creatorcontrib>Yoon, EunBin</creatorcontrib><creatorcontrib>Clark, Ian</creatorcontrib><creatorcontrib>Towrie, Michael</creatorcontrib><creatorcontrib>Greetham, Gregory M</creatorcontrib><creatorcontrib>Ng, Annabelle</creatorcontrib><creatorcontrib>Truglio, James</creatorcontrib><creatorcontrib>French, Jarrod</creatorcontrib><creatorcontrib>Meech, Stephen R</creatorcontrib><creatorcontrib>Tonge, Peter J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gil, Agnieszka</au><au>Haigney, Allison</au><au>Laptenok, Sergey P</au><au>Brust, Richard</au><au>Lukacs, Andras</au><au>Iuliano, James</au><au>Jeng, Jessica</au><au>Melief, Eduard</au><au>Zhao, Rui-Kun</au><au>Yoon, EunBin</au><au>Clark, Ian</au><au>Towrie, Michael</au><au>Greetham, Gregory M</au><au>Ng, Annabelle</au><au>Truglio, James</au><au>French, Jarrod</au><au>Meech, Stephen R</au><au>Tonge, Peter J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of the AppABLUF Photocycle Probed by Site-Specific Incorporation of Fluorotyrosine Residues: Effect of the Y21 pKa on the Forward and Reverse Ground-State Reactions</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J Am Chem Soc</addtitle><date>2016-01-27</date><risdate>2016</risdate><volume>138</volume><issue>3</issue><spage>926</spage><epage>935</epage><pages>926-935</pages><issn>1520-5126</issn><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The transcriptional antirepressor AppA is a blue light using flavin (BLUF) photoreceptor that releases the transcriptional repressor PpsR upon photoexcitation. Light activation of AppA involves changes in a hydrogen-bonding network that surrounds the flavin chromophore on the nanosecond time scale, while the dark state of AppA is then recovered in a light-independent reaction with a dramatically longer half-life of 15 min. Residue Y21, a component of the hydrogen-bonding network, is known to be essential for photoactivity. Here, we directly explore the effect of the Y21 pKa on dark state recovery by replacing Y21 with fluorotyrosine analogues that increase the acidity of Y21 by 3.5 pH units. Ultrafast transient infrared measurements confirm that the structure of AppA is unperturbed by fluorotyrosine substitution, and that there is a small (3-fold) change in the photokinetics of the forward reaction over the fluorotyrosine series. However, reduction of 3.5 pH units in the pKa of Y21 increases the rate of dark state recovery by 4000-fold with a Brønsted coefficient of ∼ 1, indicating that the Y21 proton is completely transferred in the transition state leading from light to dark adapted AppA. A large solvent isotope effect of ∼ 6-8 is also observed on the rate of dark state recovery. These data establish that the acidity of Y21 is a crucial factor for stabilizing the light activated form of the protein, and have been used to propose a model for dark state recovery that will ultimately prove useful for tuning the properties of BLUF photosensors for optogenetic applications.</abstract><cop>United States</cop><pmid>26708408</pmid><doi>10.1021/jacs.5b11115</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-5126
ispartof Journal of the American Chemical Society, 2016-01, Vol.138 (3), p.926-935
issn 1520-5126
0002-7863
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4830125
source MEDLINE; American Chemical Society Journals
subjects acidity
Bacterial Proteins - chemistry
blue light
Flavoproteins - chemistry
Fluorine - chemistry
half life
Hydrogen Bonding
Hydrogen-Ion Concentration
isotopes
Models, Molecular
Molecular Structure
optogenetics
Photochemical Processes
photoreceptors
Quantum Theory
repressor proteins
solvents
transcription (genetics)
Tyrosine - analogs & derivatives
Tyrosine - chemistry
title Mechanism of the AppABLUF Photocycle Probed by Site-Specific Incorporation of Fluorotyrosine Residues: Effect of the Y21 pKa on the Forward and Reverse Ground-State Reactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A30%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20the%20AppABLUF%20Photocycle%20Probed%20by%20Site-Specific%20Incorporation%20of%20Fluorotyrosine%20Residues:%20Effect%20of%20the%20Y21%20pKa%20on%20the%20Forward%20and%20Reverse%20Ground-State%20Reactions&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Gil,%20Agnieszka&rft.date=2016-01-27&rft.volume=138&rft.issue=3&rft.spage=926&rft.epage=935&rft.pages=926-935&rft.issn=1520-5126&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b11115&rft_dat=%3Cproquest_pubme%3E1761081823%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1761081823&rft_id=info:pmid/26708408&rfr_iscdi=true