Mechanism of the AppABLUF Photocycle Probed by Site-Specific Incorporation of Fluorotyrosine Residues: Effect of the Y21 pKa on the Forward and Reverse Ground-State Reactions
The transcriptional antirepressor AppA is a blue light using flavin (BLUF) photoreceptor that releases the transcriptional repressor PpsR upon photoexcitation. Light activation of AppA involves changes in a hydrogen-bonding network that surrounds the flavin chromophore on the nanosecond time scale,...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2016-01, Vol.138 (3), p.926-935 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 935 |
---|---|
container_issue | 3 |
container_start_page | 926 |
container_title | Journal of the American Chemical Society |
container_volume | 138 |
creator | Gil, Agnieszka Haigney, Allison Laptenok, Sergey P Brust, Richard Lukacs, Andras Iuliano, James Jeng, Jessica Melief, Eduard Zhao, Rui-Kun Yoon, EunBin Clark, Ian Towrie, Michael Greetham, Gregory M Ng, Annabelle Truglio, James French, Jarrod Meech, Stephen R Tonge, Peter J |
description | The transcriptional antirepressor AppA is a blue light using flavin (BLUF) photoreceptor that releases the transcriptional repressor PpsR upon photoexcitation. Light activation of AppA involves changes in a hydrogen-bonding network that surrounds the flavin chromophore on the nanosecond time scale, while the dark state of AppA is then recovered in a light-independent reaction with a dramatically longer half-life of 15 min. Residue Y21, a component of the hydrogen-bonding network, is known to be essential for photoactivity. Here, we directly explore the effect of the Y21 pKa on dark state recovery by replacing Y21 with fluorotyrosine analogues that increase the acidity of Y21 by 3.5 pH units. Ultrafast transient infrared measurements confirm that the structure of AppA is unperturbed by fluorotyrosine substitution, and that there is a small (3-fold) change in the photokinetics of the forward reaction over the fluorotyrosine series. However, reduction of 3.5 pH units in the pKa of Y21 increases the rate of dark state recovery by 4000-fold with a Brønsted coefficient of ∼ 1, indicating that the Y21 proton is completely transferred in the transition state leading from light to dark adapted AppA. A large solvent isotope effect of ∼ 6-8 is also observed on the rate of dark state recovery. These data establish that the acidity of Y21 is a crucial factor for stabilizing the light activated form of the protein, and have been used to propose a model for dark state recovery that will ultimately prove useful for tuning the properties of BLUF photosensors for optogenetic applications. |
doi_str_mv | 10.1021/jacs.5b11115 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4830125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1761081823</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3185-f5658965aaedba2de492372b623d441c3471730f526f11fc915a7066ff8fa2713</originalsourceid><addsrcrecordid>eNqFkcFuFDEMhkeoiJbCjTPKsZcpcTLJzHJA2lbdtmIRFUsPnEaZxGGzmk2mSaZoX6rPyKxoUTnhi23592fLLop3QE-BMviwUTqdig4mEy-KIxCMlgKYPHgWHxavU9pQSivWwKvikMmaNhVtjoqHL6jXyru0JcGSvEYyH4b52fJ2QW7WIQe90z2Smxg6NKTbkZXLWK4G1M46Ta69DnEIUWUX_B6w6McQQ97FkJxH8g2TMyOmj-TCWtT5acYPBmT4rMjUtE8XIf5S0RDlzdRyjzEhuYxh9KZcZZX3HKX3I9Kb4qVVfcK3j_64uF1cfD-_KpdfL6_P58tyw6ERpRVSNDMplELTKWawmjFes04ybqoKNK9qqDm1gkkLYPUMhKqplNY2VrEa-HHx6Q93GLstGo0-R9W3Q3RbFXdtUK79t-Lduv0Z7tuq4RSYmAAnj4AY7qYL5Hbrksa-Vx7DmFo2PYPPBJ30_5NCLYE20DA-Sd8_X-vvPk__5L8B802jrQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1761081823</pqid></control><display><type>article</type><title>Mechanism of the AppABLUF Photocycle Probed by Site-Specific Incorporation of Fluorotyrosine Residues: Effect of the Y21 pKa on the Forward and Reverse Ground-State Reactions</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Gil, Agnieszka ; Haigney, Allison ; Laptenok, Sergey P ; Brust, Richard ; Lukacs, Andras ; Iuliano, James ; Jeng, Jessica ; Melief, Eduard ; Zhao, Rui-Kun ; Yoon, EunBin ; Clark, Ian ; Towrie, Michael ; Greetham, Gregory M ; Ng, Annabelle ; Truglio, James ; French, Jarrod ; Meech, Stephen R ; Tonge, Peter J</creator><creatorcontrib>Gil, Agnieszka ; Haigney, Allison ; Laptenok, Sergey P ; Brust, Richard ; Lukacs, Andras ; Iuliano, James ; Jeng, Jessica ; Melief, Eduard ; Zhao, Rui-Kun ; Yoon, EunBin ; Clark, Ian ; Towrie, Michael ; Greetham, Gregory M ; Ng, Annabelle ; Truglio, James ; French, Jarrod ; Meech, Stephen R ; Tonge, Peter J</creatorcontrib><description>The transcriptional antirepressor AppA is a blue light using flavin (BLUF) photoreceptor that releases the transcriptional repressor PpsR upon photoexcitation. Light activation of AppA involves changes in a hydrogen-bonding network that surrounds the flavin chromophore on the nanosecond time scale, while the dark state of AppA is then recovered in a light-independent reaction with a dramatically longer half-life of 15 min. Residue Y21, a component of the hydrogen-bonding network, is known to be essential for photoactivity. Here, we directly explore the effect of the Y21 pKa on dark state recovery by replacing Y21 with fluorotyrosine analogues that increase the acidity of Y21 by 3.5 pH units. Ultrafast transient infrared measurements confirm that the structure of AppA is unperturbed by fluorotyrosine substitution, and that there is a small (3-fold) change in the photokinetics of the forward reaction over the fluorotyrosine series. However, reduction of 3.5 pH units in the pKa of Y21 increases the rate of dark state recovery by 4000-fold with a Brønsted coefficient of ∼ 1, indicating that the Y21 proton is completely transferred in the transition state leading from light to dark adapted AppA. A large solvent isotope effect of ∼ 6-8 is also observed on the rate of dark state recovery. These data establish that the acidity of Y21 is a crucial factor for stabilizing the light activated form of the protein, and have been used to propose a model for dark state recovery that will ultimately prove useful for tuning the properties of BLUF photosensors for optogenetic applications.</description><identifier>ISSN: 1520-5126</identifier><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b11115</identifier><identifier>PMID: 26708408</identifier><language>eng</language><publisher>United States</publisher><subject>acidity ; Bacterial Proteins - chemistry ; blue light ; Flavoproteins - chemistry ; Fluorine - chemistry ; half life ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; isotopes ; Models, Molecular ; Molecular Structure ; optogenetics ; Photochemical Processes ; photoreceptors ; Quantum Theory ; repressor proteins ; solvents ; transcription (genetics) ; Tyrosine - analogs & derivatives ; Tyrosine - chemistry</subject><ispartof>Journal of the American Chemical Society, 2016-01, Vol.138 (3), p.926-935</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26708408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gil, Agnieszka</creatorcontrib><creatorcontrib>Haigney, Allison</creatorcontrib><creatorcontrib>Laptenok, Sergey P</creatorcontrib><creatorcontrib>Brust, Richard</creatorcontrib><creatorcontrib>Lukacs, Andras</creatorcontrib><creatorcontrib>Iuliano, James</creatorcontrib><creatorcontrib>Jeng, Jessica</creatorcontrib><creatorcontrib>Melief, Eduard</creatorcontrib><creatorcontrib>Zhao, Rui-Kun</creatorcontrib><creatorcontrib>Yoon, EunBin</creatorcontrib><creatorcontrib>Clark, Ian</creatorcontrib><creatorcontrib>Towrie, Michael</creatorcontrib><creatorcontrib>Greetham, Gregory M</creatorcontrib><creatorcontrib>Ng, Annabelle</creatorcontrib><creatorcontrib>Truglio, James</creatorcontrib><creatorcontrib>French, Jarrod</creatorcontrib><creatorcontrib>Meech, Stephen R</creatorcontrib><creatorcontrib>Tonge, Peter J</creatorcontrib><title>Mechanism of the AppABLUF Photocycle Probed by Site-Specific Incorporation of Fluorotyrosine Residues: Effect of the Y21 pKa on the Forward and Reverse Ground-State Reactions</title><title>Journal of the American Chemical Society</title><addtitle>J Am Chem Soc</addtitle><description>The transcriptional antirepressor AppA is a blue light using flavin (BLUF) photoreceptor that releases the transcriptional repressor PpsR upon photoexcitation. Light activation of AppA involves changes in a hydrogen-bonding network that surrounds the flavin chromophore on the nanosecond time scale, while the dark state of AppA is then recovered in a light-independent reaction with a dramatically longer half-life of 15 min. Residue Y21, a component of the hydrogen-bonding network, is known to be essential for photoactivity. Here, we directly explore the effect of the Y21 pKa on dark state recovery by replacing Y21 with fluorotyrosine analogues that increase the acidity of Y21 by 3.5 pH units. Ultrafast transient infrared measurements confirm that the structure of AppA is unperturbed by fluorotyrosine substitution, and that there is a small (3-fold) change in the photokinetics of the forward reaction over the fluorotyrosine series. However, reduction of 3.5 pH units in the pKa of Y21 increases the rate of dark state recovery by 4000-fold with a Brønsted coefficient of ∼ 1, indicating that the Y21 proton is completely transferred in the transition state leading from light to dark adapted AppA. A large solvent isotope effect of ∼ 6-8 is also observed on the rate of dark state recovery. These data establish that the acidity of Y21 is a crucial factor for stabilizing the light activated form of the protein, and have been used to propose a model for dark state recovery that will ultimately prove useful for tuning the properties of BLUF photosensors for optogenetic applications.</description><subject>acidity</subject><subject>Bacterial Proteins - chemistry</subject><subject>blue light</subject><subject>Flavoproteins - chemistry</subject><subject>Fluorine - chemistry</subject><subject>half life</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen-Ion Concentration</subject><subject>isotopes</subject><subject>Models, Molecular</subject><subject>Molecular Structure</subject><subject>optogenetics</subject><subject>Photochemical Processes</subject><subject>photoreceptors</subject><subject>Quantum Theory</subject><subject>repressor proteins</subject><subject>solvents</subject><subject>transcription (genetics)</subject><subject>Tyrosine - analogs & derivatives</subject><subject>Tyrosine - chemistry</subject><issn>1520-5126</issn><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFuFDEMhkeoiJbCjTPKsZcpcTLJzHJA2lbdtmIRFUsPnEaZxGGzmk2mSaZoX6rPyKxoUTnhi23592fLLop3QE-BMviwUTqdig4mEy-KIxCMlgKYPHgWHxavU9pQSivWwKvikMmaNhVtjoqHL6jXyru0JcGSvEYyH4b52fJ2QW7WIQe90z2Smxg6NKTbkZXLWK4G1M46Ta69DnEIUWUX_B6w6McQQ97FkJxH8g2TMyOmj-TCWtT5acYPBmT4rMjUtE8XIf5S0RDlzdRyjzEhuYxh9KZcZZX3HKX3I9Kb4qVVfcK3j_64uF1cfD-_KpdfL6_P58tyw6ERpRVSNDMplELTKWawmjFes04ybqoKNK9qqDm1gkkLYPUMhKqplNY2VrEa-HHx6Q93GLstGo0-R9W3Q3RbFXdtUK79t-Lduv0Z7tuq4RSYmAAnj4AY7qYL5Hbrksa-Vx7DmFo2PYPPBJ30_5NCLYE20DA-Sd8_X-vvPk__5L8B802jrQ</recordid><startdate>20160127</startdate><enddate>20160127</enddate><creator>Gil, Agnieszka</creator><creator>Haigney, Allison</creator><creator>Laptenok, Sergey P</creator><creator>Brust, Richard</creator><creator>Lukacs, Andras</creator><creator>Iuliano, James</creator><creator>Jeng, Jessica</creator><creator>Melief, Eduard</creator><creator>Zhao, Rui-Kun</creator><creator>Yoon, EunBin</creator><creator>Clark, Ian</creator><creator>Towrie, Michael</creator><creator>Greetham, Gregory M</creator><creator>Ng, Annabelle</creator><creator>Truglio, James</creator><creator>French, Jarrod</creator><creator>Meech, Stephen R</creator><creator>Tonge, Peter J</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20160127</creationdate><title>Mechanism of the AppABLUF Photocycle Probed by Site-Specific Incorporation of Fluorotyrosine Residues: Effect of the Y21 pKa on the Forward and Reverse Ground-State Reactions</title><author>Gil, Agnieszka ; Haigney, Allison ; Laptenok, Sergey P ; Brust, Richard ; Lukacs, Andras ; Iuliano, James ; Jeng, Jessica ; Melief, Eduard ; Zhao, Rui-Kun ; Yoon, EunBin ; Clark, Ian ; Towrie, Michael ; Greetham, Gregory M ; Ng, Annabelle ; Truglio, James ; French, Jarrod ; Meech, Stephen R ; Tonge, Peter J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3185-f5658965aaedba2de492372b623d441c3471730f526f11fc915a7066ff8fa2713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>acidity</topic><topic>Bacterial Proteins - chemistry</topic><topic>blue light</topic><topic>Flavoproteins - chemistry</topic><topic>Fluorine - chemistry</topic><topic>half life</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen-Ion Concentration</topic><topic>isotopes</topic><topic>Models, Molecular</topic><topic>Molecular Structure</topic><topic>optogenetics</topic><topic>Photochemical Processes</topic><topic>photoreceptors</topic><topic>Quantum Theory</topic><topic>repressor proteins</topic><topic>solvents</topic><topic>transcription (genetics)</topic><topic>Tyrosine - analogs & derivatives</topic><topic>Tyrosine - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gil, Agnieszka</creatorcontrib><creatorcontrib>Haigney, Allison</creatorcontrib><creatorcontrib>Laptenok, Sergey P</creatorcontrib><creatorcontrib>Brust, Richard</creatorcontrib><creatorcontrib>Lukacs, Andras</creatorcontrib><creatorcontrib>Iuliano, James</creatorcontrib><creatorcontrib>Jeng, Jessica</creatorcontrib><creatorcontrib>Melief, Eduard</creatorcontrib><creatorcontrib>Zhao, Rui-Kun</creatorcontrib><creatorcontrib>Yoon, EunBin</creatorcontrib><creatorcontrib>Clark, Ian</creatorcontrib><creatorcontrib>Towrie, Michael</creatorcontrib><creatorcontrib>Greetham, Gregory M</creatorcontrib><creatorcontrib>Ng, Annabelle</creatorcontrib><creatorcontrib>Truglio, James</creatorcontrib><creatorcontrib>French, Jarrod</creatorcontrib><creatorcontrib>Meech, Stephen R</creatorcontrib><creatorcontrib>Tonge, Peter J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gil, Agnieszka</au><au>Haigney, Allison</au><au>Laptenok, Sergey P</au><au>Brust, Richard</au><au>Lukacs, Andras</au><au>Iuliano, James</au><au>Jeng, Jessica</au><au>Melief, Eduard</au><au>Zhao, Rui-Kun</au><au>Yoon, EunBin</au><au>Clark, Ian</au><au>Towrie, Michael</au><au>Greetham, Gregory M</au><au>Ng, Annabelle</au><au>Truglio, James</au><au>French, Jarrod</au><au>Meech, Stephen R</au><au>Tonge, Peter J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of the AppABLUF Photocycle Probed by Site-Specific Incorporation of Fluorotyrosine Residues: Effect of the Y21 pKa on the Forward and Reverse Ground-State Reactions</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J Am Chem Soc</addtitle><date>2016-01-27</date><risdate>2016</risdate><volume>138</volume><issue>3</issue><spage>926</spage><epage>935</epage><pages>926-935</pages><issn>1520-5126</issn><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The transcriptional antirepressor AppA is a blue light using flavin (BLUF) photoreceptor that releases the transcriptional repressor PpsR upon photoexcitation. Light activation of AppA involves changes in a hydrogen-bonding network that surrounds the flavin chromophore on the nanosecond time scale, while the dark state of AppA is then recovered in a light-independent reaction with a dramatically longer half-life of 15 min. Residue Y21, a component of the hydrogen-bonding network, is known to be essential for photoactivity. Here, we directly explore the effect of the Y21 pKa on dark state recovery by replacing Y21 with fluorotyrosine analogues that increase the acidity of Y21 by 3.5 pH units. Ultrafast transient infrared measurements confirm that the structure of AppA is unperturbed by fluorotyrosine substitution, and that there is a small (3-fold) change in the photokinetics of the forward reaction over the fluorotyrosine series. However, reduction of 3.5 pH units in the pKa of Y21 increases the rate of dark state recovery by 4000-fold with a Brønsted coefficient of ∼ 1, indicating that the Y21 proton is completely transferred in the transition state leading from light to dark adapted AppA. A large solvent isotope effect of ∼ 6-8 is also observed on the rate of dark state recovery. These data establish that the acidity of Y21 is a crucial factor for stabilizing the light activated form of the protein, and have been used to propose a model for dark state recovery that will ultimately prove useful for tuning the properties of BLUF photosensors for optogenetic applications.</abstract><cop>United States</cop><pmid>26708408</pmid><doi>10.1021/jacs.5b11115</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-5126 |
ispartof | Journal of the American Chemical Society, 2016-01, Vol.138 (3), p.926-935 |
issn | 1520-5126 0002-7863 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4830125 |
source | MEDLINE; American Chemical Society Journals |
subjects | acidity Bacterial Proteins - chemistry blue light Flavoproteins - chemistry Fluorine - chemistry half life Hydrogen Bonding Hydrogen-Ion Concentration isotopes Models, Molecular Molecular Structure optogenetics Photochemical Processes photoreceptors Quantum Theory repressor proteins solvents transcription (genetics) Tyrosine - analogs & derivatives Tyrosine - chemistry |
title | Mechanism of the AppABLUF Photocycle Probed by Site-Specific Incorporation of Fluorotyrosine Residues: Effect of the Y21 pKa on the Forward and Reverse Ground-State Reactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A30%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20the%20AppABLUF%20Photocycle%20Probed%20by%20Site-Specific%20Incorporation%20of%20Fluorotyrosine%20Residues:%20Effect%20of%20the%20Y21%20pKa%20on%20the%20Forward%20and%20Reverse%20Ground-State%20Reactions&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Gil,%20Agnieszka&rft.date=2016-01-27&rft.volume=138&rft.issue=3&rft.spage=926&rft.epage=935&rft.pages=926-935&rft.issn=1520-5126&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b11115&rft_dat=%3Cproquest_pubme%3E1761081823%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1761081823&rft_id=info:pmid/26708408&rfr_iscdi=true |