Large-deformation and high-strength amorphous porous carbon nanospheres

Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive def...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-04, Vol.6 (1), p.24187-24187, Article 24187
Hauptverfasser: Yang, Weizhu, Mao, Shimin, Yang, Jia, Shang, Tao, Song, Hongguang, Mabon, James, Swiech, Wacek, Vance, John R., Yue, Zhufeng, Dillon, Shen J., Xu, Hangxun, Xu, Baoxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24187
container_issue 1
container_start_page 24187
container_title Scientific reports
container_volume 6
creator Yang, Weizhu
Mao, Shimin
Yang, Jia
Shang, Tao
Song, Hongguang
Mabon, James
Swiech, Wacek
Vance, John R.
Yue, Zhufeng
Dillon, Shen J.
Xu, Hangxun
Xu, Baoxing
description Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.
doi_str_mv 10.1038/srep24187
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4829827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1781153315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-71f84236a08b818b43140e5061c08c5ffa2edb2f44153cb4d6f1dda0d3bfaf043</originalsourceid><addsrcrecordid>eNplkU1rGzEQhkVJqIPjQ_9AMcmlCWyrr13Jl0AxqRMw9NKehVY72l3jlTaSXOi_j4xd4yYCMQPz6J0ZvQh9IvgrwUx-iwFGyokUH9AVxbwsKKP04iyfoFmMG5xPSRecLD6iCRVY5Df0Cq3WOrRQNGB9GHTqvZtr18y7vu2KmAK4NnVzPfgwdn4X56MP-2B0qDPptPNx7CBAvEaXVm8jzI5xin7_ePy1fCrWP1fPy-_rwpSMpEIQKzlllcaylkTWnBGOocQVMVia0lpNoamp5ZyUzNS8qSxpGo0bVlttMWdT9HDQHXf1AI0Bl4LeqjH0gw5_lde9-r_i-k61_o_iki4kFVng5iDgY-pVNH0C0xnvHJikSEUzJzP05dgl-JcdxKSGPhrYbrWDvL8iQpI8IMt3im7foBu_Cy7_gSJyISshKsEydXegTPAxO2ZPExOs9jaqk42Z_Xy-4on8Z1oG7g9AzCXXQjhr-U7tFdJypxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898677673</pqid></control><display><type>article</type><title>Large-deformation and high-strength amorphous porous carbon nanospheres</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Weizhu ; Mao, Shimin ; Yang, Jia ; Shang, Tao ; Song, Hongguang ; Mabon, James ; Swiech, Wacek ; Vance, John R. ; Yue, Zhufeng ; Dillon, Shen J. ; Xu, Hangxun ; Xu, Baoxing</creator><creatorcontrib>Yang, Weizhu ; Mao, Shimin ; Yang, Jia ; Shang, Tao ; Song, Hongguang ; Mabon, James ; Swiech, Wacek ; Vance, John R. ; Yue, Zhufeng ; Dillon, Shen J. ; Xu, Hangxun ; Xu, Baoxing ; Univ. of Virginia, Charlottesville, VA (United States)</creatorcontrib><description>Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep24187</identifier><identifier>PMID: 27072412</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/988 ; 639/301/1023 ; Buckling ; Carbon ; Compression ; Deformation ; ENGINEERING ; Humanities and Social Sciences ; MATERIALS SCIENCE ; multidisciplinary ; Nanotechnology ; Nanotubes ; Pyrolysis ; Science ; Science &amp; Technology - Other Topics ; Shells</subject><ispartof>Scientific reports, 2016-04, Vol.6 (1), p.24187-24187, Article 24187</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Apr 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-71f84236a08b818b43140e5061c08c5ffa2edb2f44153cb4d6f1dda0d3bfaf043</citedby><cites>FETCH-LOGICAL-c531t-71f84236a08b818b43140e5061c08c5ffa2edb2f44153cb4d6f1dda0d3bfaf043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829827/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829827/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27072412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1624828$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Weizhu</creatorcontrib><creatorcontrib>Mao, Shimin</creatorcontrib><creatorcontrib>Yang, Jia</creatorcontrib><creatorcontrib>Shang, Tao</creatorcontrib><creatorcontrib>Song, Hongguang</creatorcontrib><creatorcontrib>Mabon, James</creatorcontrib><creatorcontrib>Swiech, Wacek</creatorcontrib><creatorcontrib>Vance, John R.</creatorcontrib><creatorcontrib>Yue, Zhufeng</creatorcontrib><creatorcontrib>Dillon, Shen J.</creatorcontrib><creatorcontrib>Xu, Hangxun</creatorcontrib><creatorcontrib>Xu, Baoxing</creatorcontrib><creatorcontrib>Univ. of Virginia, Charlottesville, VA (United States)</creatorcontrib><title>Large-deformation and high-strength amorphous porous carbon nanospheres</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.</description><subject>639/166/988</subject><subject>639/301/1023</subject><subject>Buckling</subject><subject>Carbon</subject><subject>Compression</subject><subject>Deformation</subject><subject>ENGINEERING</subject><subject>Humanities and Social Sciences</subject><subject>MATERIALS SCIENCE</subject><subject>multidisciplinary</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Pyrolysis</subject><subject>Science</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Shells</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkU1rGzEQhkVJqIPjQ_9AMcmlCWyrr13Jl0AxqRMw9NKehVY72l3jlTaSXOi_j4xd4yYCMQPz6J0ZvQh9IvgrwUx-iwFGyokUH9AVxbwsKKP04iyfoFmMG5xPSRecLD6iCRVY5Df0Cq3WOrRQNGB9GHTqvZtr18y7vu2KmAK4NnVzPfgwdn4X56MP-2B0qDPptPNx7CBAvEaXVm8jzI5xin7_ePy1fCrWP1fPy-_rwpSMpEIQKzlllcaylkTWnBGOocQVMVia0lpNoamp5ZyUzNS8qSxpGo0bVlttMWdT9HDQHXf1AI0Bl4LeqjH0gw5_lde9-r_i-k61_o_iki4kFVng5iDgY-pVNH0C0xnvHJikSEUzJzP05dgl-JcdxKSGPhrYbrWDvL8iQpI8IMt3im7foBu_Cy7_gSJyISshKsEydXegTPAxO2ZPExOs9jaqk42Z_Xy-4on8Z1oG7g9AzCXXQjhr-U7tFdJypxw</recordid><startdate>20160413</startdate><enddate>20160413</enddate><creator>Yang, Weizhu</creator><creator>Mao, Shimin</creator><creator>Yang, Jia</creator><creator>Shang, Tao</creator><creator>Song, Hongguang</creator><creator>Mabon, James</creator><creator>Swiech, Wacek</creator><creator>Vance, John R.</creator><creator>Yue, Zhufeng</creator><creator>Dillon, Shen J.</creator><creator>Xu, Hangxun</creator><creator>Xu, Baoxing</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20160413</creationdate><title>Large-deformation and high-strength amorphous porous carbon nanospheres</title><author>Yang, Weizhu ; Mao, Shimin ; Yang, Jia ; Shang, Tao ; Song, Hongguang ; Mabon, James ; Swiech, Wacek ; Vance, John R. ; Yue, Zhufeng ; Dillon, Shen J. ; Xu, Hangxun ; Xu, Baoxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-71f84236a08b818b43140e5061c08c5ffa2edb2f44153cb4d6f1dda0d3bfaf043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/166/988</topic><topic>639/301/1023</topic><topic>Buckling</topic><topic>Carbon</topic><topic>Compression</topic><topic>Deformation</topic><topic>ENGINEERING</topic><topic>Humanities and Social Sciences</topic><topic>MATERIALS SCIENCE</topic><topic>multidisciplinary</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Pyrolysis</topic><topic>Science</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Shells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Weizhu</creatorcontrib><creatorcontrib>Mao, Shimin</creatorcontrib><creatorcontrib>Yang, Jia</creatorcontrib><creatorcontrib>Shang, Tao</creatorcontrib><creatorcontrib>Song, Hongguang</creatorcontrib><creatorcontrib>Mabon, James</creatorcontrib><creatorcontrib>Swiech, Wacek</creatorcontrib><creatorcontrib>Vance, John R.</creatorcontrib><creatorcontrib>Yue, Zhufeng</creatorcontrib><creatorcontrib>Dillon, Shen J.</creatorcontrib><creatorcontrib>Xu, Hangxun</creatorcontrib><creatorcontrib>Xu, Baoxing</creatorcontrib><creatorcontrib>Univ. of Virginia, Charlottesville, VA (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Weizhu</au><au>Mao, Shimin</au><au>Yang, Jia</au><au>Shang, Tao</au><au>Song, Hongguang</au><au>Mabon, James</au><au>Swiech, Wacek</au><au>Vance, John R.</au><au>Yue, Zhufeng</au><au>Dillon, Shen J.</au><au>Xu, Hangxun</au><au>Xu, Baoxing</au><aucorp>Univ. of Virginia, Charlottesville, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-deformation and high-strength amorphous porous carbon nanospheres</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-04-13</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>24187</spage><epage>24187</epage><pages>24187-24187</pages><artnum>24187</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27072412</pmid><doi>10.1038/srep24187</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-04, Vol.6 (1), p.24187-24187, Article 24187
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4829827
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 639/166/988
639/301/1023
Buckling
Carbon
Compression
Deformation
ENGINEERING
Humanities and Social Sciences
MATERIALS SCIENCE
multidisciplinary
Nanotechnology
Nanotubes
Pyrolysis
Science
Science & Technology - Other Topics
Shells
title Large-deformation and high-strength amorphous porous carbon nanospheres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A19%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-deformation%20and%20high-strength%20amorphous%20porous%20carbon%20nanospheres&rft.jtitle=Scientific%20reports&rft.au=Yang,%20Weizhu&rft.aucorp=Univ.%20of%20Virginia,%20Charlottesville,%20VA%20(United%20States)&rft.date=2016-04-13&rft.volume=6&rft.issue=1&rft.spage=24187&rft.epage=24187&rft.pages=24187-24187&rft.artnum=24187&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep24187&rft_dat=%3Cproquest_pubme%3E1781153315%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898677673&rft_id=info:pmid/27072412&rfr_iscdi=true