Large-deformation and high-strength amorphous porous carbon nanospheres
Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive def...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-04, Vol.6 (1), p.24187-24187, Article 24187 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24187 |
---|---|
container_issue | 1 |
container_start_page | 24187 |
container_title | Scientific reports |
container_volume | 6 |
creator | Yang, Weizhu Mao, Shimin Yang, Jia Shang, Tao Song, Hongguang Mabon, James Swiech, Wacek Vance, John R. Yue, Zhufeng Dillon, Shen J. Xu, Hangxun Xu, Baoxing |
description | Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors.
In situ
compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation. |
doi_str_mv | 10.1038/srep24187 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4829827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1781153315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-71f84236a08b818b43140e5061c08c5ffa2edb2f44153cb4d6f1dda0d3bfaf043</originalsourceid><addsrcrecordid>eNplkU1rGzEQhkVJqIPjQ_9AMcmlCWyrr13Jl0AxqRMw9NKehVY72l3jlTaSXOi_j4xd4yYCMQPz6J0ZvQh9IvgrwUx-iwFGyokUH9AVxbwsKKP04iyfoFmMG5xPSRecLD6iCRVY5Df0Cq3WOrRQNGB9GHTqvZtr18y7vu2KmAK4NnVzPfgwdn4X56MP-2B0qDPptPNx7CBAvEaXVm8jzI5xin7_ePy1fCrWP1fPy-_rwpSMpEIQKzlllcaylkTWnBGOocQVMVia0lpNoamp5ZyUzNS8qSxpGo0bVlttMWdT9HDQHXf1AI0Bl4LeqjH0gw5_lde9-r_i-k61_o_iki4kFVng5iDgY-pVNH0C0xnvHJikSEUzJzP05dgl-JcdxKSGPhrYbrWDvL8iQpI8IMt3im7foBu_Cy7_gSJyISshKsEydXegTPAxO2ZPExOs9jaqk42Z_Xy-4on8Z1oG7g9AzCXXQjhr-U7tFdJypxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898677673</pqid></control><display><type>article</type><title>Large-deformation and high-strength amorphous porous carbon nanospheres</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Weizhu ; Mao, Shimin ; Yang, Jia ; Shang, Tao ; Song, Hongguang ; Mabon, James ; Swiech, Wacek ; Vance, John R. ; Yue, Zhufeng ; Dillon, Shen J. ; Xu, Hangxun ; Xu, Baoxing</creator><creatorcontrib>Yang, Weizhu ; Mao, Shimin ; Yang, Jia ; Shang, Tao ; Song, Hongguang ; Mabon, James ; Swiech, Wacek ; Vance, John R. ; Yue, Zhufeng ; Dillon, Shen J. ; Xu, Hangxun ; Xu, Baoxing ; Univ. of Virginia, Charlottesville, VA (United States)</creatorcontrib><description>Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors.
In situ
compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep24187</identifier><identifier>PMID: 27072412</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/988 ; 639/301/1023 ; Buckling ; Carbon ; Compression ; Deformation ; ENGINEERING ; Humanities and Social Sciences ; MATERIALS SCIENCE ; multidisciplinary ; Nanotechnology ; Nanotubes ; Pyrolysis ; Science ; Science & Technology - Other Topics ; Shells</subject><ispartof>Scientific reports, 2016-04, Vol.6 (1), p.24187-24187, Article 24187</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Apr 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-71f84236a08b818b43140e5061c08c5ffa2edb2f44153cb4d6f1dda0d3bfaf043</citedby><cites>FETCH-LOGICAL-c531t-71f84236a08b818b43140e5061c08c5ffa2edb2f44153cb4d6f1dda0d3bfaf043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829827/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829827/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27072412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1624828$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Weizhu</creatorcontrib><creatorcontrib>Mao, Shimin</creatorcontrib><creatorcontrib>Yang, Jia</creatorcontrib><creatorcontrib>Shang, Tao</creatorcontrib><creatorcontrib>Song, Hongguang</creatorcontrib><creatorcontrib>Mabon, James</creatorcontrib><creatorcontrib>Swiech, Wacek</creatorcontrib><creatorcontrib>Vance, John R.</creatorcontrib><creatorcontrib>Yue, Zhufeng</creatorcontrib><creatorcontrib>Dillon, Shen J.</creatorcontrib><creatorcontrib>Xu, Hangxun</creatorcontrib><creatorcontrib>Xu, Baoxing</creatorcontrib><creatorcontrib>Univ. of Virginia, Charlottesville, VA (United States)</creatorcontrib><title>Large-deformation and high-strength amorphous porous carbon nanospheres</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors.
In situ
compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.</description><subject>639/166/988</subject><subject>639/301/1023</subject><subject>Buckling</subject><subject>Carbon</subject><subject>Compression</subject><subject>Deformation</subject><subject>ENGINEERING</subject><subject>Humanities and Social Sciences</subject><subject>MATERIALS SCIENCE</subject><subject>multidisciplinary</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Pyrolysis</subject><subject>Science</subject><subject>Science & Technology - Other Topics</subject><subject>Shells</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkU1rGzEQhkVJqIPjQ_9AMcmlCWyrr13Jl0AxqRMw9NKehVY72l3jlTaSXOi_j4xd4yYCMQPz6J0ZvQh9IvgrwUx-iwFGyokUH9AVxbwsKKP04iyfoFmMG5xPSRecLD6iCRVY5Df0Cq3WOrRQNGB9GHTqvZtr18y7vu2KmAK4NnVzPfgwdn4X56MP-2B0qDPptPNx7CBAvEaXVm8jzI5xin7_ePy1fCrWP1fPy-_rwpSMpEIQKzlllcaylkTWnBGOocQVMVia0lpNoamp5ZyUzNS8qSxpGo0bVlttMWdT9HDQHXf1AI0Bl4LeqjH0gw5_lde9-r_i-k61_o_iki4kFVng5iDgY-pVNH0C0xnvHJikSEUzJzP05dgl-JcdxKSGPhrYbrWDvL8iQpI8IMt3im7foBu_Cy7_gSJyISshKsEydXegTPAxO2ZPExOs9jaqk42Z_Xy-4on8Z1oG7g9AzCXXQjhr-U7tFdJypxw</recordid><startdate>20160413</startdate><enddate>20160413</enddate><creator>Yang, Weizhu</creator><creator>Mao, Shimin</creator><creator>Yang, Jia</creator><creator>Shang, Tao</creator><creator>Song, Hongguang</creator><creator>Mabon, James</creator><creator>Swiech, Wacek</creator><creator>Vance, John R.</creator><creator>Yue, Zhufeng</creator><creator>Dillon, Shen J.</creator><creator>Xu, Hangxun</creator><creator>Xu, Baoxing</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20160413</creationdate><title>Large-deformation and high-strength amorphous porous carbon nanospheres</title><author>Yang, Weizhu ; Mao, Shimin ; Yang, Jia ; Shang, Tao ; Song, Hongguang ; Mabon, James ; Swiech, Wacek ; Vance, John R. ; Yue, Zhufeng ; Dillon, Shen J. ; Xu, Hangxun ; Xu, Baoxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-71f84236a08b818b43140e5061c08c5ffa2edb2f44153cb4d6f1dda0d3bfaf043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/166/988</topic><topic>639/301/1023</topic><topic>Buckling</topic><topic>Carbon</topic><topic>Compression</topic><topic>Deformation</topic><topic>ENGINEERING</topic><topic>Humanities and Social Sciences</topic><topic>MATERIALS SCIENCE</topic><topic>multidisciplinary</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Pyrolysis</topic><topic>Science</topic><topic>Science & Technology - Other Topics</topic><topic>Shells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Weizhu</creatorcontrib><creatorcontrib>Mao, Shimin</creatorcontrib><creatorcontrib>Yang, Jia</creatorcontrib><creatorcontrib>Shang, Tao</creatorcontrib><creatorcontrib>Song, Hongguang</creatorcontrib><creatorcontrib>Mabon, James</creatorcontrib><creatorcontrib>Swiech, Wacek</creatorcontrib><creatorcontrib>Vance, John R.</creatorcontrib><creatorcontrib>Yue, Zhufeng</creatorcontrib><creatorcontrib>Dillon, Shen J.</creatorcontrib><creatorcontrib>Xu, Hangxun</creatorcontrib><creatorcontrib>Xu, Baoxing</creatorcontrib><creatorcontrib>Univ. of Virginia, Charlottesville, VA (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Weizhu</au><au>Mao, Shimin</au><au>Yang, Jia</au><au>Shang, Tao</au><au>Song, Hongguang</au><au>Mabon, James</au><au>Swiech, Wacek</au><au>Vance, John R.</au><au>Yue, Zhufeng</au><au>Dillon, Shen J.</au><au>Xu, Hangxun</au><au>Xu, Baoxing</au><aucorp>Univ. of Virginia, Charlottesville, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-deformation and high-strength amorphous porous carbon nanospheres</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-04-13</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>24187</spage><epage>24187</epage><pages>24187-24187</pages><artnum>24187</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors.
In situ
compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27072412</pmid><doi>10.1038/srep24187</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-04, Vol.6 (1), p.24187-24187, Article 24187 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4829827 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 639/166/988 639/301/1023 Buckling Carbon Compression Deformation ENGINEERING Humanities and Social Sciences MATERIALS SCIENCE multidisciplinary Nanotechnology Nanotubes Pyrolysis Science Science & Technology - Other Topics Shells |
title | Large-deformation and high-strength amorphous porous carbon nanospheres |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A19%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-deformation%20and%20high-strength%20amorphous%20porous%20carbon%20nanospheres&rft.jtitle=Scientific%20reports&rft.au=Yang,%20Weizhu&rft.aucorp=Univ.%20of%20Virginia,%20Charlottesville,%20VA%20(United%20States)&rft.date=2016-04-13&rft.volume=6&rft.issue=1&rft.spage=24187&rft.epage=24187&rft.pages=24187-24187&rft.artnum=24187&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep24187&rft_dat=%3Cproquest_pubme%3E1781153315%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898677673&rft_id=info:pmid/27072412&rfr_iscdi=true |