Mapping of bionic array electric field focusing in plasmid DNA-based gene electrotransfer

Molecular medicine through gene therapy is challenged to achieve targeted action. This is now possible utilizing bionic electrode arrays for focal delivery of naked (plasmid) DNA via gene electrotransfer. Here, we establish the properties of array-based electroporation affecting targeted gene delive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene therapy 2016-04, Vol.23 (4), p.369-379
Hauptverfasser: Browne, C J, Pinyon, J L, Housley, D M, Crawford, E N, Lovell, N H, Klugmann, M, Housley, G D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 379
container_issue 4
container_start_page 369
container_title Gene therapy
container_volume 23
creator Browne, C J
Pinyon, J L
Housley, D M
Crawford, E N
Lovell, N H
Klugmann, M
Housley, G D
description Molecular medicine through gene therapy is challenged to achieve targeted action. This is now possible utilizing bionic electrode arrays for focal delivery of naked (plasmid) DNA via gene electrotransfer. Here, we establish the properties of array-based electroporation affecting targeted gene delivery. An array with eight 300 μm platinum ring electrodes configured as a cochlear implant bionic interface was used to transduce HEK293 cell monolayers with a plasmid-DNA green fluorescent protein (GFP) reporter gene construct. Electroporation parameters were pulse intensity, number, duration, separation and electrode configuration. The latter determined the shape of the electric fields, which were mapped using a voltage probe. Electrode array-based electroporation was found to require ~100 × lower applied voltages for cell transduction than conventional electroporation. This was found to be due to compression of the field lines orthogonal to the array. A circular area of GFP-positive cells was created when the electrodes were ganged together as four adjacent anodes and four cathodes, whereas alternating electrode polarity created a linear area of GFP-positive cells. The refinement of gene delivery parameters was validated in vivo in the guinea pig cochlea. These findings have significant clinical ramifications, where spatiotemporal control of gene expression can be predicted by manipulation of the electric field via current steering at a cellular level.
doi_str_mv 10.1038/gt.2016.8
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4827009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A452052786</galeid><sourcerecordid>A452052786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-1738a71bf3acefdcd604332fb84885ae69b47412103088e8181be3d24b7448243</originalsourceid><addsrcrecordid>eNqFkl2L1DAUhoso7rh64R-QgiAqdEzSNElvhGH9WlgV_LjwKqTpSSdLm3STVtx_b-qO64wuSC5Ckue8nPPmzbKHGK0xKsWLbloThNla3MpWmHJWVJSR29kK1awuOCbiKLsX4zlCiHJB7mZHhAnCqKhW2bf3ahyt63Jv8sZ6Z3WuQlCXOfSgp5COxkLf5sbrOS6cdfnYqzjYNn_1YVM0KkKbd-BgV-GnoFw0EO5nd4zqIzzY7cfZ1zevv5y8K84-vj092ZwVmrF6KjAvheK4MaXSYFrdMkTLkphGUCEqBaxuKKeYpEGRECCwwA2ULaENp1QQWh5nL690x7kZoNXgUge9HIMdVLiUXll5-OLsVnb-u0zVHKE6CTzdCQR_MUOc5GCjhr5XDvwcJeaiIrSiqa3_o7wWomSIJ_TxX-i5n4NLTvyiUJq7qv5QnepBWmcW-_QiKje0IqgiXLBErW-g0mphsNo7MDbdHxQ8OyhIzAQ_pk7NMcrTz58O2Sd77BZUP22j7-cppSHeKKqDjzGAufYYI7nkUHaTXHIoRWIf7X_KNfk7eAl4fgXE9OQ6CHv2_KP2E_jd4kw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779017355</pqid></control><display><type>article</type><title>Mapping of bionic array electric field focusing in plasmid DNA-based gene electrotransfer</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Browne, C J ; Pinyon, J L ; Housley, D M ; Crawford, E N ; Lovell, N H ; Klugmann, M ; Housley, G D</creator><creatorcontrib>Browne, C J ; Pinyon, J L ; Housley, D M ; Crawford, E N ; Lovell, N H ; Klugmann, M ; Housley, G D</creatorcontrib><description>Molecular medicine through gene therapy is challenged to achieve targeted action. This is now possible utilizing bionic electrode arrays for focal delivery of naked (plasmid) DNA via gene electrotransfer. Here, we establish the properties of array-based electroporation affecting targeted gene delivery. An array with eight 300 μm platinum ring electrodes configured as a cochlear implant bionic interface was used to transduce HEK293 cell monolayers with a plasmid-DNA green fluorescent protein (GFP) reporter gene construct. Electroporation parameters were pulse intensity, number, duration, separation and electrode configuration. The latter determined the shape of the electric fields, which were mapped using a voltage probe. Electrode array-based electroporation was found to require ~100 × lower applied voltages for cell transduction than conventional electroporation. This was found to be due to compression of the field lines orthogonal to the array. A circular area of GFP-positive cells was created when the electrodes were ganged together as four adjacent anodes and four cathodes, whereas alternating electrode polarity created a linear area of GFP-positive cells. The refinement of gene delivery parameters was validated in vivo in the guinea pig cochlea. These findings have significant clinical ramifications, where spatiotemporal control of gene expression can be predicted by manipulation of the electric field via current steering at a cellular level.</description><identifier>ISSN: 0969-7128</identifier><identifier>EISSN: 1476-5462</identifier><identifier>DOI: 10.1038/gt.2016.8</identifier><identifier>PMID: 26826485</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/109 ; 14/19 ; 42 ; 42/35 ; 42/41 ; 42/44 ; 631/1647/1513 ; 631/1647/2204 ; 631/1647/2300/1851 ; 631/61/201 ; 631/61/2300 ; 631/61/2300/1850 ; 9/30 ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Bionics - instrumentation ; Bionics - methods ; Cell Biology ; Deoxyribonucleic acid ; DNA ; Electric fields ; Electrodes ; Electroporation ; Electroporation - methods ; Gene Expression ; Gene Therapy ; Gene Transfer Techniques ; Genetic Therapy - methods ; Guinea Pigs ; HEK293 Cells ; Human Genetics ; Humans ; Innovations ; Methods ; Molecular targeted therapy ; Nanotechnology ; Original – Enabling Technologies ; original-article-enabling-technologies ; Plasmids ; Plasmids - administration &amp; dosage ; Plasmids - genetics ; Properties</subject><ispartof>Gene therapy, 2016-04, Vol.23 (4), p.369-379</ispartof><rights>The Author(s) 2016</rights><rights>COPYRIGHT 2016 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 2016</rights><rights>Copyright © 2016 Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-1738a71bf3acefdcd604332fb84885ae69b47412103088e8181be3d24b7448243</citedby><cites>FETCH-LOGICAL-c669t-1738a71bf3acefdcd604332fb84885ae69b47412103088e8181be3d24b7448243</cites><orcidid>0000-0003-0574-612X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/gt.2016.8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/gt.2016.8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26826485$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Browne, C J</creatorcontrib><creatorcontrib>Pinyon, J L</creatorcontrib><creatorcontrib>Housley, D M</creatorcontrib><creatorcontrib>Crawford, E N</creatorcontrib><creatorcontrib>Lovell, N H</creatorcontrib><creatorcontrib>Klugmann, M</creatorcontrib><creatorcontrib>Housley, G D</creatorcontrib><title>Mapping of bionic array electric field focusing in plasmid DNA-based gene electrotransfer</title><title>Gene therapy</title><addtitle>Gene Ther</addtitle><addtitle>Gene Ther</addtitle><description>Molecular medicine through gene therapy is challenged to achieve targeted action. This is now possible utilizing bionic electrode arrays for focal delivery of naked (plasmid) DNA via gene electrotransfer. Here, we establish the properties of array-based electroporation affecting targeted gene delivery. An array with eight 300 μm platinum ring electrodes configured as a cochlear implant bionic interface was used to transduce HEK293 cell monolayers with a plasmid-DNA green fluorescent protein (GFP) reporter gene construct. Electroporation parameters were pulse intensity, number, duration, separation and electrode configuration. The latter determined the shape of the electric fields, which were mapped using a voltage probe. Electrode array-based electroporation was found to require ~100 × lower applied voltages for cell transduction than conventional electroporation. This was found to be due to compression of the field lines orthogonal to the array. A circular area of GFP-positive cells was created when the electrodes were ganged together as four adjacent anodes and four cathodes, whereas alternating electrode polarity created a linear area of GFP-positive cells. The refinement of gene delivery parameters was validated in vivo in the guinea pig cochlea. These findings have significant clinical ramifications, where spatiotemporal control of gene expression can be predicted by manipulation of the electric field via current steering at a cellular level.</description><subject>13/109</subject><subject>14/19</subject><subject>42</subject><subject>42/35</subject><subject>42/41</subject><subject>42/44</subject><subject>631/1647/1513</subject><subject>631/1647/2204</subject><subject>631/1647/2300/1851</subject><subject>631/61/201</subject><subject>631/61/2300</subject><subject>631/61/2300/1850</subject><subject>9/30</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bionics - instrumentation</subject><subject>Bionics - methods</subject><subject>Cell Biology</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>Electroporation</subject><subject>Electroporation - methods</subject><subject>Gene Expression</subject><subject>Gene Therapy</subject><subject>Gene Transfer Techniques</subject><subject>Genetic Therapy - methods</subject><subject>Guinea Pigs</subject><subject>HEK293 Cells</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Innovations</subject><subject>Methods</subject><subject>Molecular targeted therapy</subject><subject>Nanotechnology</subject><subject>Original – Enabling Technologies</subject><subject>original-article-enabling-technologies</subject><subject>Plasmids</subject><subject>Plasmids - administration &amp; dosage</subject><subject>Plasmids - genetics</subject><subject>Properties</subject><issn>0969-7128</issn><issn>1476-5462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkl2L1DAUhoso7rh64R-QgiAqdEzSNElvhGH9WlgV_LjwKqTpSSdLm3STVtx_b-qO64wuSC5Ckue8nPPmzbKHGK0xKsWLbloThNla3MpWmHJWVJSR29kK1awuOCbiKLsX4zlCiHJB7mZHhAnCqKhW2bf3ahyt63Jv8sZ6Z3WuQlCXOfSgp5COxkLf5sbrOS6cdfnYqzjYNn_1YVM0KkKbd-BgV-GnoFw0EO5nd4zqIzzY7cfZ1zevv5y8K84-vj092ZwVmrF6KjAvheK4MaXSYFrdMkTLkphGUCEqBaxuKKeYpEGRECCwwA2ULaENp1QQWh5nL690x7kZoNXgUge9HIMdVLiUXll5-OLsVnb-u0zVHKE6CTzdCQR_MUOc5GCjhr5XDvwcJeaiIrSiqa3_o7wWomSIJ_TxX-i5n4NLTvyiUJq7qv5QnepBWmcW-_QiKje0IqgiXLBErW-g0mphsNo7MDbdHxQ8OyhIzAQ_pk7NMcrTz58O2Sd77BZUP22j7-cppSHeKKqDjzGAufYYI7nkUHaTXHIoRWIf7X_KNfk7eAl4fgXE9OQ6CHv2_KP2E_jd4kw</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Browne, C J</creator><creator>Pinyon, J L</creator><creator>Housley, D M</creator><creator>Crawford, E N</creator><creator>Lovell, N H</creator><creator>Klugmann, M</creator><creator>Housley, G D</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0574-612X</orcidid></search><sort><creationdate>20160401</creationdate><title>Mapping of bionic array electric field focusing in plasmid DNA-based gene electrotransfer</title><author>Browne, C J ; Pinyon, J L ; Housley, D M ; Crawford, E N ; Lovell, N H ; Klugmann, M ; Housley, G D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-1738a71bf3acefdcd604332fb84885ae69b47412103088e8181be3d24b7448243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13/109</topic><topic>14/19</topic><topic>42</topic><topic>42/35</topic><topic>42/41</topic><topic>42/44</topic><topic>631/1647/1513</topic><topic>631/1647/2204</topic><topic>631/1647/2300/1851</topic><topic>631/61/201</topic><topic>631/61/2300</topic><topic>631/61/2300/1850</topic><topic>9/30</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bionics - instrumentation</topic><topic>Bionics - methods</topic><topic>Cell Biology</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>Electroporation</topic><topic>Electroporation - methods</topic><topic>Gene Expression</topic><topic>Gene Therapy</topic><topic>Gene Transfer Techniques</topic><topic>Genetic Therapy - methods</topic><topic>Guinea Pigs</topic><topic>HEK293 Cells</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Innovations</topic><topic>Methods</topic><topic>Molecular targeted therapy</topic><topic>Nanotechnology</topic><topic>Original – Enabling Technologies</topic><topic>original-article-enabling-technologies</topic><topic>Plasmids</topic><topic>Plasmids - administration &amp; dosage</topic><topic>Plasmids - genetics</topic><topic>Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Browne, C J</creatorcontrib><creatorcontrib>Pinyon, J L</creatorcontrib><creatorcontrib>Housley, D M</creatorcontrib><creatorcontrib>Crawford, E N</creatorcontrib><creatorcontrib>Lovell, N H</creatorcontrib><creatorcontrib>Klugmann, M</creatorcontrib><creatorcontrib>Housley, G D</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Browne, C J</au><au>Pinyon, J L</au><au>Housley, D M</au><au>Crawford, E N</au><au>Lovell, N H</au><au>Klugmann, M</au><au>Housley, G D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping of bionic array electric field focusing in plasmid DNA-based gene electrotransfer</atitle><jtitle>Gene therapy</jtitle><stitle>Gene Ther</stitle><addtitle>Gene Ther</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>23</volume><issue>4</issue><spage>369</spage><epage>379</epage><pages>369-379</pages><issn>0969-7128</issn><eissn>1476-5462</eissn><abstract>Molecular medicine through gene therapy is challenged to achieve targeted action. This is now possible utilizing bionic electrode arrays for focal delivery of naked (plasmid) DNA via gene electrotransfer. Here, we establish the properties of array-based electroporation affecting targeted gene delivery. An array with eight 300 μm platinum ring electrodes configured as a cochlear implant bionic interface was used to transduce HEK293 cell monolayers with a plasmid-DNA green fluorescent protein (GFP) reporter gene construct. Electroporation parameters were pulse intensity, number, duration, separation and electrode configuration. The latter determined the shape of the electric fields, which were mapped using a voltage probe. Electrode array-based electroporation was found to require ~100 × lower applied voltages for cell transduction than conventional electroporation. This was found to be due to compression of the field lines orthogonal to the array. A circular area of GFP-positive cells was created when the electrodes were ganged together as four adjacent anodes and four cathodes, whereas alternating electrode polarity created a linear area of GFP-positive cells. The refinement of gene delivery parameters was validated in vivo in the guinea pig cochlea. These findings have significant clinical ramifications, where spatiotemporal control of gene expression can be predicted by manipulation of the electric field via current steering at a cellular level.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26826485</pmid><doi>10.1038/gt.2016.8</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0574-612X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-7128
ispartof Gene therapy, 2016-04, Vol.23 (4), p.369-379
issn 0969-7128
1476-5462
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4827009
source MEDLINE; SpringerLink Journals
subjects 13/109
14/19
42
42/35
42/41
42/44
631/1647/1513
631/1647/2204
631/1647/2300/1851
631/61/201
631/61/2300
631/61/2300/1850
9/30
Animals
Biomedical and Life Sciences
Biomedicine
Bionics - instrumentation
Bionics - methods
Cell Biology
Deoxyribonucleic acid
DNA
Electric fields
Electrodes
Electroporation
Electroporation - methods
Gene Expression
Gene Therapy
Gene Transfer Techniques
Genetic Therapy - methods
Guinea Pigs
HEK293 Cells
Human Genetics
Humans
Innovations
Methods
Molecular targeted therapy
Nanotechnology
Original – Enabling Technologies
original-article-enabling-technologies
Plasmids
Plasmids - administration & dosage
Plasmids - genetics
Properties
title Mapping of bionic array electric field focusing in plasmid DNA-based gene electrotransfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A25%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20of%20bionic%20array%20electric%20field%20focusing%20in%20plasmid%20DNA-based%20gene%20electrotransfer&rft.jtitle=Gene%20therapy&rft.au=Browne,%20C%20J&rft.date=2016-04-01&rft.volume=23&rft.issue=4&rft.spage=369&rft.epage=379&rft.pages=369-379&rft.issn=0969-7128&rft.eissn=1476-5462&rft_id=info:doi/10.1038/gt.2016.8&rft_dat=%3Cgale_pubme%3EA452052786%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1779017355&rft_id=info:pmid/26826485&rft_galeid=A452052786&rfr_iscdi=true