A Framework for Local Mechanical Characterization of Atherosclerotic Plaques: Combination of Ultrasound Displacement Imaging and Inverse Finite Element Analysis
Biomechanical models have the potential to predict plaque rupture. For reliable models, correct material properties of plaque components are a prerequisite. This study presents a new technique, where high resolution ultrasound displacement imaging and inverse finite element (FE) modeling is combined...
Gespeichert in:
Veröffentlicht in: | Annals of biomedical engineering 2016-04, Vol.44 (4), p.968-979 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 979 |
---|---|
container_issue | 4 |
container_start_page | 968 |
container_title | Annals of biomedical engineering |
container_volume | 44 |
creator | Akyildiz, Ali C. Hansen, Hendrik H. G. Nieuwstadt, Harm A. Speelman, Lambert De Korte, Chris L. van der Steen, Antonius F. W. Gijsen, Frank J. H. |
description | Biomechanical models have the potential to predict plaque rupture. For reliable models, correct material properties of plaque components are a prerequisite. This study presents a new technique, where high resolution ultrasound displacement imaging and inverse finite element (FE) modeling is combined, to estimate material properties of plaque components. Iliac arteries with plaques were excised from 6 atherosclerotic pigs and subjected to an inflation test with pressures ranging from 10 to 120 mmHg. The arteries were imaged with high frequency 40 MHz ultrasound. Deformation maps of the plaques were reconstructed by cross correlation of the ultrasound radiofrequency data. Subsequently, the arteries were perfusion fixed for histology and structural components were identified. The histological data were registered to the ultrasound data to construct FE model of the plaques. Material properties of the arterial wall and the intima of the atherosclerotic plaques were estimated using a grid search method. The computed displacement fields showed good agreement with the measured displacement fields, implying that the FE models were able to capture local inhomogeneities within the plaque. On average, nonlinear stiffening of both the wall and the intima was observed, and the wall of the atheroslcerotic porcine iliac arteries was markedly stiffer than the intima (877 ± 459 vs. 100 ± 68 kPa at 100 mmHg). The large spread in the data further illustrates the wide variation of the material properties. We demonstrated the feasibility of a mixed experimental–numerical framework to determine the material properties of arterial wall and intima of atherosclerotic plaques from intact arteries, and concluded that, due to the observed variation, plaque specific properties are required for accurate stress simulations. |
doi_str_mv | 10.1007/s10439-015-1410-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4826666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808066359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-de3001a61b027030c0d35827acb06751ba4bf066491b530517593bcec525194b3</originalsourceid><addsrcrecordid>eNqNks-LEzEUx4Mobrf6B3iRgBcvo-9NJpkZD0KpWy1U9OCeQyZN26yZpCbTlfWv2T_VDF3LKojmkATe5_3-EvIM4RUC1K8TQsXaApAXWCEUzQMyQV6zohWNeEgmAC0UohXVGTlP6QoAsWH8MTkrBWvzwQm5ndFFVL35HuJXugmRroJWjn40eqe8Hb_znYpKDybaH2qwwdOwobNhZ2JI2uV7sJp-durbwaQ3dB76zvoTd-mGqFI4-DV9Z9PeKW164we67NXW-i1V2bD01yYmQxfW28HQC3dEZl65m2TTE_Joo1wyT-_eKblcXHyZfyhWn94v57NVoTkTQ7E2LLenBHZQ1sBAw5rxpqyV7kDUHDtVdRsQomqx4ww41rxlnTaalxzbqmNT8vYYd3_oerPWuYaonNxH26t4I4Oy8neLtzu5DdeyakqRTw7w8i5ADOMwBtnbpI1zyptwSBIbaHIBLOf9J1o3vKwqAeJ_0NwMNHnrU_LiD_QqHGIe40jVbY2IjGUKj5TOC0zRbE4tIshRVfKoKplVJUdVySb7PL8_m5PHLxlloDwCKZv81sR7qf8a9Sept9kk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779711133</pqid></control><display><type>article</type><title>A Framework for Local Mechanical Characterization of Atherosclerotic Plaques: Combination of Ultrasound Displacement Imaging and Inverse Finite Element Analysis</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Akyildiz, Ali C. ; Hansen, Hendrik H. G. ; Nieuwstadt, Harm A. ; Speelman, Lambert ; De Korte, Chris L. ; van der Steen, Antonius F. W. ; Gijsen, Frank J. H.</creator><creatorcontrib>Akyildiz, Ali C. ; Hansen, Hendrik H. G. ; Nieuwstadt, Harm A. ; Speelman, Lambert ; De Korte, Chris L. ; van der Steen, Antonius F. W. ; Gijsen, Frank J. H.</creatorcontrib><description>Biomechanical models have the potential to predict plaque rupture. For reliable models, correct material properties of plaque components are a prerequisite. This study presents a new technique, where high resolution ultrasound displacement imaging and inverse finite element (FE) modeling is combined, to estimate material properties of plaque components. Iliac arteries with plaques were excised from 6 atherosclerotic pigs and subjected to an inflation test with pressures ranging from 10 to 120 mmHg. The arteries were imaged with high frequency 40 MHz ultrasound. Deformation maps of the plaques were reconstructed by cross correlation of the ultrasound radiofrequency data. Subsequently, the arteries were perfusion fixed for histology and structural components were identified. The histological data were registered to the ultrasound data to construct FE model of the plaques. Material properties of the arterial wall and the intima of the atherosclerotic plaques were estimated using a grid search method. The computed displacement fields showed good agreement with the measured displacement fields, implying that the FE models were able to capture local inhomogeneities within the plaque. On average, nonlinear stiffening of both the wall and the intima was observed, and the wall of the atheroslcerotic porcine iliac arteries was markedly stiffer than the intima (877 ± 459 vs. 100 ± 68 kPa at 100 mmHg). The large spread in the data further illustrates the wide variation of the material properties. We demonstrated the feasibility of a mixed experimental–numerical framework to determine the material properties of arterial wall and intima of atherosclerotic plaques from intact arteries, and concluded that, due to the observed variation, plaque specific properties are required for accurate stress simulations.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-015-1410-8</identifier><identifier>PMID: 26399991</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Arteries ; Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Classical Mechanics ; Displacement ; Finite Element Analysis ; Finite element method ; Histology ; Iliac Artery - diagnostic imaging ; Iliac Artery - physiopathology ; Imaging ; Inverse ; Mathematical analysis ; Plaque, Atherosclerotic - diagnostic imaging ; Plaque, Atherosclerotic - physiopathology ; Search methods ; Swine ; Ultrasonography ; Ultrasound</subject><ispartof>Annals of biomedical engineering, 2016-04, Vol.44 (4), p.968-979</ispartof><rights>The Author(s) 2015</rights><rights>Biomedical Engineering Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-de3001a61b027030c0d35827acb06751ba4bf066491b530517593bcec525194b3</citedby><cites>FETCH-LOGICAL-c536t-de3001a61b027030c0d35827acb06751ba4bf066491b530517593bcec525194b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-015-1410-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-015-1410-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26399991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akyildiz, Ali C.</creatorcontrib><creatorcontrib>Hansen, Hendrik H. G.</creatorcontrib><creatorcontrib>Nieuwstadt, Harm A.</creatorcontrib><creatorcontrib>Speelman, Lambert</creatorcontrib><creatorcontrib>De Korte, Chris L.</creatorcontrib><creatorcontrib>van der Steen, Antonius F. W.</creatorcontrib><creatorcontrib>Gijsen, Frank J. H.</creatorcontrib><title>A Framework for Local Mechanical Characterization of Atherosclerotic Plaques: Combination of Ultrasound Displacement Imaging and Inverse Finite Element Analysis</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>Biomechanical models have the potential to predict plaque rupture. For reliable models, correct material properties of plaque components are a prerequisite. This study presents a new technique, where high resolution ultrasound displacement imaging and inverse finite element (FE) modeling is combined, to estimate material properties of plaque components. Iliac arteries with plaques were excised from 6 atherosclerotic pigs and subjected to an inflation test with pressures ranging from 10 to 120 mmHg. The arteries were imaged with high frequency 40 MHz ultrasound. Deformation maps of the plaques were reconstructed by cross correlation of the ultrasound radiofrequency data. Subsequently, the arteries were perfusion fixed for histology and structural components were identified. The histological data were registered to the ultrasound data to construct FE model of the plaques. Material properties of the arterial wall and the intima of the atherosclerotic plaques were estimated using a grid search method. The computed displacement fields showed good agreement with the measured displacement fields, implying that the FE models were able to capture local inhomogeneities within the plaque. On average, nonlinear stiffening of both the wall and the intima was observed, and the wall of the atheroslcerotic porcine iliac arteries was markedly stiffer than the intima (877 ± 459 vs. 100 ± 68 kPa at 100 mmHg). The large spread in the data further illustrates the wide variation of the material properties. We demonstrated the feasibility of a mixed experimental–numerical framework to determine the material properties of arterial wall and intima of atherosclerotic plaques from intact arteries, and concluded that, due to the observed variation, plaque specific properties are required for accurate stress simulations.</description><subject>Animals</subject><subject>Arteries</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Classical Mechanics</subject><subject>Displacement</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Histology</subject><subject>Iliac Artery - diagnostic imaging</subject><subject>Iliac Artery - physiopathology</subject><subject>Imaging</subject><subject>Inverse</subject><subject>Mathematical analysis</subject><subject>Plaque, Atherosclerotic - diagnostic imaging</subject><subject>Plaque, Atherosclerotic - physiopathology</subject><subject>Search methods</subject><subject>Swine</subject><subject>Ultrasonography</subject><subject>Ultrasound</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNks-LEzEUx4Mobrf6B3iRgBcvo-9NJpkZD0KpWy1U9OCeQyZN26yZpCbTlfWv2T_VDF3LKojmkATe5_3-EvIM4RUC1K8TQsXaApAXWCEUzQMyQV6zohWNeEgmAC0UohXVGTlP6QoAsWH8MTkrBWvzwQm5ndFFVL35HuJXugmRroJWjn40eqe8Hb_znYpKDybaH2qwwdOwobNhZ2JI2uV7sJp-durbwaQ3dB76zvoTd-mGqFI4-DV9Z9PeKW164we67NXW-i1V2bD01yYmQxfW28HQC3dEZl65m2TTE_Joo1wyT-_eKblcXHyZfyhWn94v57NVoTkTQ7E2LLenBHZQ1sBAw5rxpqyV7kDUHDtVdRsQomqx4ww41rxlnTaalxzbqmNT8vYYd3_oerPWuYaonNxH26t4I4Oy8neLtzu5DdeyakqRTw7w8i5ADOMwBtnbpI1zyptwSBIbaHIBLOf9J1o3vKwqAeJ_0NwMNHnrU_LiD_QqHGIe40jVbY2IjGUKj5TOC0zRbE4tIshRVfKoKplVJUdVySb7PL8_m5PHLxlloDwCKZv81sR7qf8a9Sept9kk</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Akyildiz, Ali C.</creator><creator>Hansen, Hendrik H. G.</creator><creator>Nieuwstadt, Harm A.</creator><creator>Speelman, Lambert</creator><creator>De Korte, Chris L.</creator><creator>van der Steen, Antonius F. W.</creator><creator>Gijsen, Frank J. H.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160401</creationdate><title>A Framework for Local Mechanical Characterization of Atherosclerotic Plaques: Combination of Ultrasound Displacement Imaging and Inverse Finite Element Analysis</title><author>Akyildiz, Ali C. ; Hansen, Hendrik H. G. ; Nieuwstadt, Harm A. ; Speelman, Lambert ; De Korte, Chris L. ; van der Steen, Antonius F. W. ; Gijsen, Frank J. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-de3001a61b027030c0d35827acb06751ba4bf066491b530517593bcec525194b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Arteries</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Classical Mechanics</topic><topic>Displacement</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Histology</topic><topic>Iliac Artery - diagnostic imaging</topic><topic>Iliac Artery - physiopathology</topic><topic>Imaging</topic><topic>Inverse</topic><topic>Mathematical analysis</topic><topic>Plaque, Atherosclerotic - diagnostic imaging</topic><topic>Plaque, Atherosclerotic - physiopathology</topic><topic>Search methods</topic><topic>Swine</topic><topic>Ultrasonography</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akyildiz, Ali C.</creatorcontrib><creatorcontrib>Hansen, Hendrik H. G.</creatorcontrib><creatorcontrib>Nieuwstadt, Harm A.</creatorcontrib><creatorcontrib>Speelman, Lambert</creatorcontrib><creatorcontrib>De Korte, Chris L.</creatorcontrib><creatorcontrib>van der Steen, Antonius F. W.</creatorcontrib><creatorcontrib>Gijsen, Frank J. H.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akyildiz, Ali C.</au><au>Hansen, Hendrik H. G.</au><au>Nieuwstadt, Harm A.</au><au>Speelman, Lambert</au><au>De Korte, Chris L.</au><au>van der Steen, Antonius F. W.</au><au>Gijsen, Frank J. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Framework for Local Mechanical Characterization of Atherosclerotic Plaques: Combination of Ultrasound Displacement Imaging and Inverse Finite Element Analysis</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>44</volume><issue>4</issue><spage>968</spage><epage>979</epage><pages>968-979</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>Biomechanical models have the potential to predict plaque rupture. For reliable models, correct material properties of plaque components are a prerequisite. This study presents a new technique, where high resolution ultrasound displacement imaging and inverse finite element (FE) modeling is combined, to estimate material properties of plaque components. Iliac arteries with plaques were excised from 6 atherosclerotic pigs and subjected to an inflation test with pressures ranging from 10 to 120 mmHg. The arteries were imaged with high frequency 40 MHz ultrasound. Deformation maps of the plaques were reconstructed by cross correlation of the ultrasound radiofrequency data. Subsequently, the arteries were perfusion fixed for histology and structural components were identified. The histological data were registered to the ultrasound data to construct FE model of the plaques. Material properties of the arterial wall and the intima of the atherosclerotic plaques were estimated using a grid search method. The computed displacement fields showed good agreement with the measured displacement fields, implying that the FE models were able to capture local inhomogeneities within the plaque. On average, nonlinear stiffening of both the wall and the intima was observed, and the wall of the atheroslcerotic porcine iliac arteries was markedly stiffer than the intima (877 ± 459 vs. 100 ± 68 kPa at 100 mmHg). The large spread in the data further illustrates the wide variation of the material properties. We demonstrated the feasibility of a mixed experimental–numerical framework to determine the material properties of arterial wall and intima of atherosclerotic plaques from intact arteries, and concluded that, due to the observed variation, plaque specific properties are required for accurate stress simulations.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26399991</pmid><doi>10.1007/s10439-015-1410-8</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6964 |
ispartof | Annals of biomedical engineering, 2016-04, Vol.44 (4), p.968-979 |
issn | 0090-6964 1573-9686 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4826666 |
source | MEDLINE; SpringerLink Journals |
subjects | Animals Arteries Biochemistry Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Classical Mechanics Displacement Finite Element Analysis Finite element method Histology Iliac Artery - diagnostic imaging Iliac Artery - physiopathology Imaging Inverse Mathematical analysis Plaque, Atherosclerotic - diagnostic imaging Plaque, Atherosclerotic - physiopathology Search methods Swine Ultrasonography Ultrasound |
title | A Framework for Local Mechanical Characterization of Atherosclerotic Plaques: Combination of Ultrasound Displacement Imaging and Inverse Finite Element Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A48%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Framework%20for%20Local%20Mechanical%20Characterization%20of%20Atherosclerotic%20Plaques:%20Combination%20of%20Ultrasound%20Displacement%20Imaging%20and%20Inverse%20Finite%20Element%20Analysis&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Akyildiz,%20Ali%20C.&rft.date=2016-04-01&rft.volume=44&rft.issue=4&rft.spage=968&rft.epage=979&rft.pages=968-979&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-015-1410-8&rft_dat=%3Cproquest_pubme%3E1808066359%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1779711133&rft_id=info:pmid/26399991&rfr_iscdi=true |