RNA Polymerase II Regulates Topoisomerase 1 Activity to Favor Efficient Transcription
We report a mechanism through which the transcription machinery directly controls topoisomerase 1 (TOP1) activity to adjust DNA topology throughout the transcription cycle. By comparing TOP1 occupancy using chromatin immunoprecipitation sequencing (ChIP-seq) versus TOP1 activity using topoisomerase ...
Gespeichert in:
Veröffentlicht in: | Cell 2016-04, Vol.165 (2), p.357-371 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 371 |
---|---|
container_issue | 2 |
container_start_page | 357 |
container_title | Cell |
container_volume | 165 |
creator | Baranello, Laura Wojtowicz, Damian Cui, Kairong Devaiah, Ballachanda N. Chung, Hye-Jung Chan-Salis, Ka Yim Guha, Rajarshi Wilson, Kelli Zhang, Xiaohu Zhang, Hongliang Piotrowski, Jason Thomas, Craig J. Singer, Dinah S. Pugh, B. Franklin Pommier, Yves Przytycka, Teresa M. Kouzine, Fedor Lewis, Brian A. Zhao, Keji Levens, David |
description | We report a mechanism through which the transcription machinery directly controls topoisomerase 1 (TOP1) activity to adjust DNA topology throughout the transcription cycle. By comparing TOP1 occupancy using chromatin immunoprecipitation sequencing (ChIP-seq) versus TOP1 activity using topoisomerase 1 sequencing (TOP1-seq), a method reported here to map catalytically engaged TOP1, TOP1 bound at promoters was discovered to become fully active only after pause-release. This transition coupled the phosphorylation of the carboxyl-terminal-domain (CTD) of RNA polymerase II (RNAPII) with stimulation of TOP1 above its basal rate, enhancing its processivity. TOP1 stimulation is strongly dependent on the kinase activity of BRD4, a protein that phosphorylates Ser2-CTD and regulates RNAPII pause-release. Thus the coordinated action of BRD4 and TOP1 overcame the torsional stress opposing transcription as RNAPII commenced elongation but preserved negative supercoiling that assists promoter melting at start sites. This nexus between transcription and DNA topology promises to elicit new strategies to intercept pathological gene expression.
[Display omitted]
•The DNA relaxation of TOP1 is coordinated with pause-release•TOP1 activity is stimulated by BRD4-dependent phosphorylation of RNAPII•The N-term domain of TOP1 mediates interaction and stimulation by RNAPII•BRD4 inhibitors and TOP1 inhibitors synergize in killing cells
The transcription machinery directly controls topoisomerase 1 activity to adjust DNA topology throughout the transcription cycle. |
doi_str_mv | 10.1016/j.cell.2016.02.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4826470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867416301866</els_id><sourcerecordid>1779882492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-98aa20108fb95fe07c5d153196bdcd210747b87c1cbb77cb2e7e1666d55f4e8a3</originalsourceid><addsrcrecordid>eNqNUcFqGzEUFKWlcdL-QA9Fx152I8nSSoJSMCFpDKEtwTkLrfZtKrNeuZJs8N9Xi92QXkJO78GbGebNIPSJkpoS2lyuawfDULOy14TVZN68QTNKtKw4lewtmhGiWaUayc_QeUprQogSQrxHZ0wSoZqmmaGH-x8L_CsMhw1EmwAvl_geHneDzZDwKmyDT-F0onjhst_7fMA54Bu7DxFf9713HsaMV9GOyUW_zT6MH9C73g4JPp7mBXq4uV5d3VZ3P78vrxZ3leNK5Uora4t7ovpWix6IdKKjYk5103auY5RILlslHXVtK6VrGUigxXYnRM9B2fkF-nbU3e7aDXSuGIl2MNvoNzYeTLDe_H8Z_W_zGPaGK9ZwSYrAl5NADH92kLLZ-DSlakcIu2So1JxryiR9BVRqpRjXrEDZEepiSClC_-SIEjNVZ9ZmYpqpOkOYKdUV0ufnvzxR_nVVAF-PACiJ7j1Ek6boHXQ-gsumC_4l_b8JAatP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779882492</pqid></control><display><type>article</type><title>RNA Polymerase II Regulates Topoisomerase 1 Activity to Favor Efficient Transcription</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Baranello, Laura ; Wojtowicz, Damian ; Cui, Kairong ; Devaiah, Ballachanda N. ; Chung, Hye-Jung ; Chan-Salis, Ka Yim ; Guha, Rajarshi ; Wilson, Kelli ; Zhang, Xiaohu ; Zhang, Hongliang ; Piotrowski, Jason ; Thomas, Craig J. ; Singer, Dinah S. ; Pugh, B. Franklin ; Pommier, Yves ; Przytycka, Teresa M. ; Kouzine, Fedor ; Lewis, Brian A. ; Zhao, Keji ; Levens, David</creator><creatorcontrib>Baranello, Laura ; Wojtowicz, Damian ; Cui, Kairong ; Devaiah, Ballachanda N. ; Chung, Hye-Jung ; Chan-Salis, Ka Yim ; Guha, Rajarshi ; Wilson, Kelli ; Zhang, Xiaohu ; Zhang, Hongliang ; Piotrowski, Jason ; Thomas, Craig J. ; Singer, Dinah S. ; Pugh, B. Franklin ; Pommier, Yves ; Przytycka, Teresa M. ; Kouzine, Fedor ; Lewis, Brian A. ; Zhao, Keji ; Levens, David</creatorcontrib><description>We report a mechanism through which the transcription machinery directly controls topoisomerase 1 (TOP1) activity to adjust DNA topology throughout the transcription cycle. By comparing TOP1 occupancy using chromatin immunoprecipitation sequencing (ChIP-seq) versus TOP1 activity using topoisomerase 1 sequencing (TOP1-seq), a method reported here to map catalytically engaged TOP1, TOP1 bound at promoters was discovered to become fully active only after pause-release. This transition coupled the phosphorylation of the carboxyl-terminal-domain (CTD) of RNA polymerase II (RNAPII) with stimulation of TOP1 above its basal rate, enhancing its processivity. TOP1 stimulation is strongly dependent on the kinase activity of BRD4, a protein that phosphorylates Ser2-CTD and regulates RNAPII pause-release. Thus the coordinated action of BRD4 and TOP1 overcame the torsional stress opposing transcription as RNAPII commenced elongation but preserved negative supercoiling that assists promoter melting at start sites. This nexus between transcription and DNA topology promises to elicit new strategies to intercept pathological gene expression.
[Display omitted]
•The DNA relaxation of TOP1 is coordinated with pause-release•TOP1 activity is stimulated by BRD4-dependent phosphorylation of RNAPII•The N-term domain of TOP1 mediates interaction and stimulation by RNAPII•BRD4 inhibitors and TOP1 inhibitors synergize in killing cells
The transcription machinery directly controls topoisomerase 1 activity to adjust DNA topology throughout the transcription cycle.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2016.02.036</identifier><identifier>PMID: 27058666</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>DNA - chemistry ; DNA - metabolism ; DNA Topoisomerases, Type I - genetics ; DNA Topoisomerases, Type I - metabolism ; Gene Knockdown Techniques ; Humans ; Promoter Regions, Genetic ; RNA Polymerase II - chemistry ; RNA Polymerase II - isolation & purification ; RNA Polymerase II - metabolism ; Transcription Elongation, Genetic ; Transcription Factors - isolation & purification ; Transcription Initiation Site ; Transcription, Genetic</subject><ispartof>Cell, 2016-04, Vol.165 (2), p.357-371</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-98aa20108fb95fe07c5d153196bdcd210747b87c1cbb77cb2e7e1666d55f4e8a3</citedby><cites>FETCH-LOGICAL-c488t-98aa20108fb95fe07c5d153196bdcd210747b87c1cbb77cb2e7e1666d55f4e8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2016.02.036$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27058666$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baranello, Laura</creatorcontrib><creatorcontrib>Wojtowicz, Damian</creatorcontrib><creatorcontrib>Cui, Kairong</creatorcontrib><creatorcontrib>Devaiah, Ballachanda N.</creatorcontrib><creatorcontrib>Chung, Hye-Jung</creatorcontrib><creatorcontrib>Chan-Salis, Ka Yim</creatorcontrib><creatorcontrib>Guha, Rajarshi</creatorcontrib><creatorcontrib>Wilson, Kelli</creatorcontrib><creatorcontrib>Zhang, Xiaohu</creatorcontrib><creatorcontrib>Zhang, Hongliang</creatorcontrib><creatorcontrib>Piotrowski, Jason</creatorcontrib><creatorcontrib>Thomas, Craig J.</creatorcontrib><creatorcontrib>Singer, Dinah S.</creatorcontrib><creatorcontrib>Pugh, B. Franklin</creatorcontrib><creatorcontrib>Pommier, Yves</creatorcontrib><creatorcontrib>Przytycka, Teresa M.</creatorcontrib><creatorcontrib>Kouzine, Fedor</creatorcontrib><creatorcontrib>Lewis, Brian A.</creatorcontrib><creatorcontrib>Zhao, Keji</creatorcontrib><creatorcontrib>Levens, David</creatorcontrib><title>RNA Polymerase II Regulates Topoisomerase 1 Activity to Favor Efficient Transcription</title><title>Cell</title><addtitle>Cell</addtitle><description>We report a mechanism through which the transcription machinery directly controls topoisomerase 1 (TOP1) activity to adjust DNA topology throughout the transcription cycle. By comparing TOP1 occupancy using chromatin immunoprecipitation sequencing (ChIP-seq) versus TOP1 activity using topoisomerase 1 sequencing (TOP1-seq), a method reported here to map catalytically engaged TOP1, TOP1 bound at promoters was discovered to become fully active only after pause-release. This transition coupled the phosphorylation of the carboxyl-terminal-domain (CTD) of RNA polymerase II (RNAPII) with stimulation of TOP1 above its basal rate, enhancing its processivity. TOP1 stimulation is strongly dependent on the kinase activity of BRD4, a protein that phosphorylates Ser2-CTD and regulates RNAPII pause-release. Thus the coordinated action of BRD4 and TOP1 overcame the torsional stress opposing transcription as RNAPII commenced elongation but preserved negative supercoiling that assists promoter melting at start sites. This nexus between transcription and DNA topology promises to elicit new strategies to intercept pathological gene expression.
[Display omitted]
•The DNA relaxation of TOP1 is coordinated with pause-release•TOP1 activity is stimulated by BRD4-dependent phosphorylation of RNAPII•The N-term domain of TOP1 mediates interaction and stimulation by RNAPII•BRD4 inhibitors and TOP1 inhibitors synergize in killing cells
The transcription machinery directly controls topoisomerase 1 activity to adjust DNA topology throughout the transcription cycle.</description><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA Topoisomerases, Type I - genetics</subject><subject>DNA Topoisomerases, Type I - metabolism</subject><subject>Gene Knockdown Techniques</subject><subject>Humans</subject><subject>Promoter Regions, Genetic</subject><subject>RNA Polymerase II - chemistry</subject><subject>RNA Polymerase II - isolation & purification</subject><subject>RNA Polymerase II - metabolism</subject><subject>Transcription Elongation, Genetic</subject><subject>Transcription Factors - isolation & purification</subject><subject>Transcription Initiation Site</subject><subject>Transcription, Genetic</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUcFqGzEUFKWlcdL-QA9Fx152I8nSSoJSMCFpDKEtwTkLrfZtKrNeuZJs8N9Xi92QXkJO78GbGebNIPSJkpoS2lyuawfDULOy14TVZN68QTNKtKw4lewtmhGiWaUayc_QeUprQogSQrxHZ0wSoZqmmaGH-x8L_CsMhw1EmwAvl_geHneDzZDwKmyDT-F0onjhst_7fMA54Bu7DxFf9713HsaMV9GOyUW_zT6MH9C73g4JPp7mBXq4uV5d3VZ3P78vrxZ3leNK5Uora4t7ovpWix6IdKKjYk5103auY5RILlslHXVtK6VrGUigxXYnRM9B2fkF-nbU3e7aDXSuGIl2MNvoNzYeTLDe_H8Z_W_zGPaGK9ZwSYrAl5NADH92kLLZ-DSlakcIu2So1JxryiR9BVRqpRjXrEDZEepiSClC_-SIEjNVZ9ZmYpqpOkOYKdUV0ufnvzxR_nVVAF-PACiJ7j1Ek6boHXQ-gsumC_4l_b8JAatP</recordid><startdate>20160407</startdate><enddate>20160407</enddate><creator>Baranello, Laura</creator><creator>Wojtowicz, Damian</creator><creator>Cui, Kairong</creator><creator>Devaiah, Ballachanda N.</creator><creator>Chung, Hye-Jung</creator><creator>Chan-Salis, Ka Yim</creator><creator>Guha, Rajarshi</creator><creator>Wilson, Kelli</creator><creator>Zhang, Xiaohu</creator><creator>Zhang, Hongliang</creator><creator>Piotrowski, Jason</creator><creator>Thomas, Craig J.</creator><creator>Singer, Dinah S.</creator><creator>Pugh, B. Franklin</creator><creator>Pommier, Yves</creator><creator>Przytycka, Teresa M.</creator><creator>Kouzine, Fedor</creator><creator>Lewis, Brian A.</creator><creator>Zhao, Keji</creator><creator>Levens, David</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>20160407</creationdate><title>RNA Polymerase II Regulates Topoisomerase 1 Activity to Favor Efficient Transcription</title><author>Baranello, Laura ; Wojtowicz, Damian ; Cui, Kairong ; Devaiah, Ballachanda N. ; Chung, Hye-Jung ; Chan-Salis, Ka Yim ; Guha, Rajarshi ; Wilson, Kelli ; Zhang, Xiaohu ; Zhang, Hongliang ; Piotrowski, Jason ; Thomas, Craig J. ; Singer, Dinah S. ; Pugh, B. Franklin ; Pommier, Yves ; Przytycka, Teresa M. ; Kouzine, Fedor ; Lewis, Brian A. ; Zhao, Keji ; Levens, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-98aa20108fb95fe07c5d153196bdcd210747b87c1cbb77cb2e7e1666d55f4e8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA Topoisomerases, Type I - genetics</topic><topic>DNA Topoisomerases, Type I - metabolism</topic><topic>Gene Knockdown Techniques</topic><topic>Humans</topic><topic>Promoter Regions, Genetic</topic><topic>RNA Polymerase II - chemistry</topic><topic>RNA Polymerase II - isolation & purification</topic><topic>RNA Polymerase II - metabolism</topic><topic>Transcription Elongation, Genetic</topic><topic>Transcription Factors - isolation & purification</topic><topic>Transcription Initiation Site</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baranello, Laura</creatorcontrib><creatorcontrib>Wojtowicz, Damian</creatorcontrib><creatorcontrib>Cui, Kairong</creatorcontrib><creatorcontrib>Devaiah, Ballachanda N.</creatorcontrib><creatorcontrib>Chung, Hye-Jung</creatorcontrib><creatorcontrib>Chan-Salis, Ka Yim</creatorcontrib><creatorcontrib>Guha, Rajarshi</creatorcontrib><creatorcontrib>Wilson, Kelli</creatorcontrib><creatorcontrib>Zhang, Xiaohu</creatorcontrib><creatorcontrib>Zhang, Hongliang</creatorcontrib><creatorcontrib>Piotrowski, Jason</creatorcontrib><creatorcontrib>Thomas, Craig J.</creatorcontrib><creatorcontrib>Singer, Dinah S.</creatorcontrib><creatorcontrib>Pugh, B. Franklin</creatorcontrib><creatorcontrib>Pommier, Yves</creatorcontrib><creatorcontrib>Przytycka, Teresa M.</creatorcontrib><creatorcontrib>Kouzine, Fedor</creatorcontrib><creatorcontrib>Lewis, Brian A.</creatorcontrib><creatorcontrib>Zhao, Keji</creatorcontrib><creatorcontrib>Levens, David</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baranello, Laura</au><au>Wojtowicz, Damian</au><au>Cui, Kairong</au><au>Devaiah, Ballachanda N.</au><au>Chung, Hye-Jung</au><au>Chan-Salis, Ka Yim</au><au>Guha, Rajarshi</au><au>Wilson, Kelli</au><au>Zhang, Xiaohu</au><au>Zhang, Hongliang</au><au>Piotrowski, Jason</au><au>Thomas, Craig J.</au><au>Singer, Dinah S.</au><au>Pugh, B. Franklin</au><au>Pommier, Yves</au><au>Przytycka, Teresa M.</au><au>Kouzine, Fedor</au><au>Lewis, Brian A.</au><au>Zhao, Keji</au><au>Levens, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNA Polymerase II Regulates Topoisomerase 1 Activity to Favor Efficient Transcription</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2016-04-07</date><risdate>2016</risdate><volume>165</volume><issue>2</issue><spage>357</spage><epage>371</epage><pages>357-371</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>We report a mechanism through which the transcription machinery directly controls topoisomerase 1 (TOP1) activity to adjust DNA topology throughout the transcription cycle. By comparing TOP1 occupancy using chromatin immunoprecipitation sequencing (ChIP-seq) versus TOP1 activity using topoisomerase 1 sequencing (TOP1-seq), a method reported here to map catalytically engaged TOP1, TOP1 bound at promoters was discovered to become fully active only after pause-release. This transition coupled the phosphorylation of the carboxyl-terminal-domain (CTD) of RNA polymerase II (RNAPII) with stimulation of TOP1 above its basal rate, enhancing its processivity. TOP1 stimulation is strongly dependent on the kinase activity of BRD4, a protein that phosphorylates Ser2-CTD and regulates RNAPII pause-release. Thus the coordinated action of BRD4 and TOP1 overcame the torsional stress opposing transcription as RNAPII commenced elongation but preserved negative supercoiling that assists promoter melting at start sites. This nexus between transcription and DNA topology promises to elicit new strategies to intercept pathological gene expression.
[Display omitted]
•The DNA relaxation of TOP1 is coordinated with pause-release•TOP1 activity is stimulated by BRD4-dependent phosphorylation of RNAPII•The N-term domain of TOP1 mediates interaction and stimulation by RNAPII•BRD4 inhibitors and TOP1 inhibitors synergize in killing cells
The transcription machinery directly controls topoisomerase 1 activity to adjust DNA topology throughout the transcription cycle.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27058666</pmid><doi>10.1016/j.cell.2016.02.036</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2016-04, Vol.165 (2), p.357-371 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4826470 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier) |
subjects | DNA - chemistry DNA - metabolism DNA Topoisomerases, Type I - genetics DNA Topoisomerases, Type I - metabolism Gene Knockdown Techniques Humans Promoter Regions, Genetic RNA Polymerase II - chemistry RNA Polymerase II - isolation & purification RNA Polymerase II - metabolism Transcription Elongation, Genetic Transcription Factors - isolation & purification Transcription Initiation Site Transcription, Genetic |
title | RNA Polymerase II Regulates Topoisomerase 1 Activity to Favor Efficient Transcription |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNA%20Polymerase%20II%20Regulates%20Topoisomerase%201%20Activity%20to%20Favor%20Efficient%20Transcription&rft.jtitle=Cell&rft.au=Baranello,%20Laura&rft.date=2016-04-07&rft.volume=165&rft.issue=2&rft.spage=357&rft.epage=371&rft.pages=357-371&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2016.02.036&rft_dat=%3Cproquest_pubme%3E1779882492%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1779882492&rft_id=info:pmid/27058666&rft_els_id=S0092867416301866&rfr_iscdi=true |