Transcription factor KLF6 upregulates expression of metalloprotease MMP14 and subsequent release of soluble endoglin during vascular injury
After endothelial injury, the transcription factor Krüppel-like factor 6 (KLF6) translocates into the cell nucleus to regulate a variety of target genes involved in angiogenesis, vascular repair and remodeling, including components of the membrane transforming growth factor beta (TGF-β) receptor com...
Gespeichert in:
Veröffentlicht in: | Angiogenesis (London) 2016-04, Vol.19 (2), p.155-171 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 171 |
---|---|
container_issue | 2 |
container_start_page | 155 |
container_title | Angiogenesis (London) |
container_volume | 19 |
creator | Gallardo-Vara, Eunate Blanco, Francisco J. Roqué, Mercè Friedman, Scott L. Suzuki, Toru Botella, Luisa M. Bernabeu, Carmelo |
description | After endothelial injury, the transcription factor Krüppel-like factor 6 (KLF6) translocates into the cell nucleus to regulate a variety of target genes involved in angiogenesis, vascular repair and remodeling, including components of the membrane transforming growth factor beta (TGF-β) receptor complex such as endoglin and activin receptor-like kinase 1. The membrane metalloproteinase 14 (MMP14 or MT1-MMP) targets endoglin to release soluble endoglin and is involved in vascular inflammation and endothelial tubulogenesis. However, little is known about the regulation of MMP14 expression during vascular wounding. In vitro denudation of monolayers of human endothelial cell monolayers leads to an increase in the KLF6 gene transcriptional rate, followed by an upregulation of MMP14 and release of soluble endoglin. Concomitant with this process, MMP14 co-localizes with endoglin in the sprouting endothelial cells surrounding the wound border. MMP14 expression at mRNA and protein levels is increased by ectopic KLF6 and downregulated by KLF6 suppression in cultured endothelial cells. Moreover, after wire-induced endothelial denudation,
Klf6
+/−
mice show lower levels of MMP14 in their vasculature compared with their wild-type siblings. Ectopic cellular expression of KLF6 results in an increased transcription rate of MMP14, and chromatin immunoprecipitation assays show that KLF6 interacts with MMP14 promoter in ECs, this interaction being enhanced during wound healing. Furthermore, KLF6 markedly increases the transcriptional activity of different reporter constructs of MMP14 gene promoter. These results suggest that KLF6 regulates MMP14 transcription and is a critical player of the gene expression network triggered during endothelial repair. |
doi_str_mv | 10.1007/s10456-016-9495-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4819519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3997881301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-b94ee07141d5327d8c5a4f1b11151f7db4c29fdc886fe240341a39711e9d54573</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxi0EokvhAbggS1y4BDyJHccXJFRRQGwFh3K2HGeyZOW1gx1X7TPw0jhsqQoSJ2s8v_nmz0fIc2CvgTH5JgHjoq0YtJXiSlTdA7IBIZtK1kw9JBumWlW1SrIT8iSlPWPlo-OPyUnddoIx0WzIz8tofLJxmpcpeDoau4RIP2_PW5rniLvszIKJ4nUJUlqRMNIDLsa5MMewoElILy6-AqfGDzTlPuGPjH6hEd3vZOFTcLl3SNEPYecmT4ccJ7-jVybZ0iDSye9zvHlKHo3GJXx2-56Sb-fvL88-VtsvHz6dvdtWlku2VL3iiEwCh0E0tRw6KwwfoQcAAaMcem5rNQ6269oRa84aDqZREgDVIHg5zyl5e9Sdc3_AwZZpo3F6jtPBxBsdzKT_zvjpu96FK807UAJUEXh1KxBDWTYt-jAli84ZjyEnDVK2TDVlgIK-_Afdhxx9WW-lhOykAigUHCkbQ0oRx7thgOnVan20Wher9Wq17krNi_tb3FX88bYA9RFI83ptjPda_1f1F7xut2o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1775787911</pqid></control><display><type>article</type><title>Transcription factor KLF6 upregulates expression of metalloprotease MMP14 and subsequent release of soluble endoglin during vascular injury</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Gallardo-Vara, Eunate ; Blanco, Francisco J. ; Roqué, Mercè ; Friedman, Scott L. ; Suzuki, Toru ; Botella, Luisa M. ; Bernabeu, Carmelo</creator><creatorcontrib>Gallardo-Vara, Eunate ; Blanco, Francisco J. ; Roqué, Mercè ; Friedman, Scott L. ; Suzuki, Toru ; Botella, Luisa M. ; Bernabeu, Carmelo</creatorcontrib><description>After endothelial injury, the transcription factor Krüppel-like factor 6 (KLF6) translocates into the cell nucleus to regulate a variety of target genes involved in angiogenesis, vascular repair and remodeling, including components of the membrane transforming growth factor beta (TGF-β) receptor complex such as endoglin and activin receptor-like kinase 1. The membrane metalloproteinase 14 (MMP14 or MT1-MMP) targets endoglin to release soluble endoglin and is involved in vascular inflammation and endothelial tubulogenesis. However, little is known about the regulation of MMP14 expression during vascular wounding. In vitro denudation of monolayers of human endothelial cell monolayers leads to an increase in the KLF6 gene transcriptional rate, followed by an upregulation of MMP14 and release of soluble endoglin. Concomitant with this process, MMP14 co-localizes with endoglin in the sprouting endothelial cells surrounding the wound border. MMP14 expression at mRNA and protein levels is increased by ectopic KLF6 and downregulated by KLF6 suppression in cultured endothelial cells. Moreover, after wire-induced endothelial denudation,
Klf6
+/−
mice show lower levels of MMP14 in their vasculature compared with their wild-type siblings. Ectopic cellular expression of KLF6 results in an increased transcription rate of MMP14, and chromatin immunoprecipitation assays show that KLF6 interacts with MMP14 promoter in ECs, this interaction being enhanced during wound healing. Furthermore, KLF6 markedly increases the transcriptional activity of different reporter constructs of MMP14 gene promoter. These results suggest that KLF6 regulates MMP14 transcription and is a critical player of the gene expression network triggered during endothelial repair.</description><identifier>ISSN: 0969-6970</identifier><identifier>EISSN: 1573-7209</identifier><identifier>DOI: 10.1007/s10456-016-9495-8</identifier><identifier>PMID: 26850053</identifier><identifier>CODEN: AGIOFT</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Animals ; Base Sequence ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Cardiology ; Cell Biology ; Computer Simulation ; Endoglin - genetics ; Endoglin - metabolism ; HEK293 Cells ; Human Umbilical Vein Endothelial Cells - metabolism ; Humans ; Kruppel-Like Factor 6 ; Kruppel-Like Transcription Factors - metabolism ; Matrix Metalloproteinase 14 - genetics ; Matrix Metalloproteinase 14 - metabolism ; Mice, Inbred C57BL ; Oncology ; Ophthalmology ; Original Paper ; Promoter Regions, Genetic - genetics ; Protein Binding ; Proto-Oncogene Proteins - metabolism ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Solubility ; Transcription, Genetic ; Up-Regulation - genetics ; Vascular System Injuries - enzymology ; Vascular System Injuries - genetics ; Vascular System Injuries - pathology ; Wound Healing</subject><ispartof>Angiogenesis (London), 2016-04, Vol.19 (2), p.155-171</ispartof><rights>The Author(s) 2016</rights><rights>Springer Science+Business Media Dordrecht 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-b94ee07141d5327d8c5a4f1b11151f7db4c29fdc886fe240341a39711e9d54573</citedby><cites>FETCH-LOGICAL-c470t-b94ee07141d5327d8c5a4f1b11151f7db4c29fdc886fe240341a39711e9d54573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10456-016-9495-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10456-016-9495-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26850053$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gallardo-Vara, Eunate</creatorcontrib><creatorcontrib>Blanco, Francisco J.</creatorcontrib><creatorcontrib>Roqué, Mercè</creatorcontrib><creatorcontrib>Friedman, Scott L.</creatorcontrib><creatorcontrib>Suzuki, Toru</creatorcontrib><creatorcontrib>Botella, Luisa M.</creatorcontrib><creatorcontrib>Bernabeu, Carmelo</creatorcontrib><title>Transcription factor KLF6 upregulates expression of metalloprotease MMP14 and subsequent release of soluble endoglin during vascular injury</title><title>Angiogenesis (London)</title><addtitle>Angiogenesis</addtitle><addtitle>Angiogenesis</addtitle><description>After endothelial injury, the transcription factor Krüppel-like factor 6 (KLF6) translocates into the cell nucleus to regulate a variety of target genes involved in angiogenesis, vascular repair and remodeling, including components of the membrane transforming growth factor beta (TGF-β) receptor complex such as endoglin and activin receptor-like kinase 1. The membrane metalloproteinase 14 (MMP14 or MT1-MMP) targets endoglin to release soluble endoglin and is involved in vascular inflammation and endothelial tubulogenesis. However, little is known about the regulation of MMP14 expression during vascular wounding. In vitro denudation of monolayers of human endothelial cell monolayers leads to an increase in the KLF6 gene transcriptional rate, followed by an upregulation of MMP14 and release of soluble endoglin. Concomitant with this process, MMP14 co-localizes with endoglin in the sprouting endothelial cells surrounding the wound border. MMP14 expression at mRNA and protein levels is increased by ectopic KLF6 and downregulated by KLF6 suppression in cultured endothelial cells. Moreover, after wire-induced endothelial denudation,
Klf6
+/−
mice show lower levels of MMP14 in their vasculature compared with their wild-type siblings. Ectopic cellular expression of KLF6 results in an increased transcription rate of MMP14, and chromatin immunoprecipitation assays show that KLF6 interacts with MMP14 promoter in ECs, this interaction being enhanced during wound healing. Furthermore, KLF6 markedly increases the transcriptional activity of different reporter constructs of MMP14 gene promoter. These results suggest that KLF6 regulates MMP14 transcription and is a critical player of the gene expression network triggered during endothelial repair.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Cardiology</subject><subject>Cell Biology</subject><subject>Computer Simulation</subject><subject>Endoglin - genetics</subject><subject>Endoglin - metabolism</subject><subject>HEK293 Cells</subject><subject>Human Umbilical Vein Endothelial Cells - metabolism</subject><subject>Humans</subject><subject>Kruppel-Like Factor 6</subject><subject>Kruppel-Like Transcription Factors - metabolism</subject><subject>Matrix Metalloproteinase 14 - genetics</subject><subject>Matrix Metalloproteinase 14 - metabolism</subject><subject>Mice, Inbred C57BL</subject><subject>Oncology</subject><subject>Ophthalmology</subject><subject>Original Paper</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Protein Binding</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Solubility</subject><subject>Transcription, Genetic</subject><subject>Up-Regulation - genetics</subject><subject>Vascular System Injuries - enzymology</subject><subject>Vascular System Injuries - genetics</subject><subject>Vascular System Injuries - pathology</subject><subject>Wound Healing</subject><issn>0969-6970</issn><issn>1573-7209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1kc9u1DAQxi0EokvhAbggS1y4BDyJHccXJFRRQGwFh3K2HGeyZOW1gx1X7TPw0jhsqQoSJ2s8v_nmz0fIc2CvgTH5JgHjoq0YtJXiSlTdA7IBIZtK1kw9JBumWlW1SrIT8iSlPWPlo-OPyUnddoIx0WzIz8tofLJxmpcpeDoau4RIP2_PW5rniLvszIKJ4nUJUlqRMNIDLsa5MMewoElILy6-AqfGDzTlPuGPjH6hEd3vZOFTcLl3SNEPYecmT4ccJ7-jVybZ0iDSye9zvHlKHo3GJXx2-56Sb-fvL88-VtsvHz6dvdtWlku2VL3iiEwCh0E0tRw6KwwfoQcAAaMcem5rNQ6269oRa84aDqZREgDVIHg5zyl5e9Sdc3_AwZZpo3F6jtPBxBsdzKT_zvjpu96FK807UAJUEXh1KxBDWTYt-jAli84ZjyEnDVK2TDVlgIK-_Afdhxx9WW-lhOykAigUHCkbQ0oRx7thgOnVan20Wher9Wq17krNi_tb3FX88bYA9RFI83ptjPda_1f1F7xut2o</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Gallardo-Vara, Eunate</creator><creator>Blanco, Francisco J.</creator><creator>Roqué, Mercè</creator><creator>Friedman, Scott L.</creator><creator>Suzuki, Toru</creator><creator>Botella, Luisa M.</creator><creator>Bernabeu, Carmelo</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160401</creationdate><title>Transcription factor KLF6 upregulates expression of metalloprotease MMP14 and subsequent release of soluble endoglin during vascular injury</title><author>Gallardo-Vara, Eunate ; Blanco, Francisco J. ; Roqué, Mercè ; Friedman, Scott L. ; Suzuki, Toru ; Botella, Luisa M. ; Bernabeu, Carmelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-b94ee07141d5327d8c5a4f1b11151f7db4c29fdc886fe240341a39711e9d54573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Cardiology</topic><topic>Cell Biology</topic><topic>Computer Simulation</topic><topic>Endoglin - genetics</topic><topic>Endoglin - metabolism</topic><topic>HEK293 Cells</topic><topic>Human Umbilical Vein Endothelial Cells - metabolism</topic><topic>Humans</topic><topic>Kruppel-Like Factor 6</topic><topic>Kruppel-Like Transcription Factors - metabolism</topic><topic>Matrix Metalloproteinase 14 - genetics</topic><topic>Matrix Metalloproteinase 14 - metabolism</topic><topic>Mice, Inbred C57BL</topic><topic>Oncology</topic><topic>Ophthalmology</topic><topic>Original Paper</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Protein Binding</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Solubility</topic><topic>Transcription, Genetic</topic><topic>Up-Regulation - genetics</topic><topic>Vascular System Injuries - enzymology</topic><topic>Vascular System Injuries - genetics</topic><topic>Vascular System Injuries - pathology</topic><topic>Wound Healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallardo-Vara, Eunate</creatorcontrib><creatorcontrib>Blanco, Francisco J.</creatorcontrib><creatorcontrib>Roqué, Mercè</creatorcontrib><creatorcontrib>Friedman, Scott L.</creatorcontrib><creatorcontrib>Suzuki, Toru</creatorcontrib><creatorcontrib>Botella, Luisa M.</creatorcontrib><creatorcontrib>Bernabeu, Carmelo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angiogenesis (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallardo-Vara, Eunate</au><au>Blanco, Francisco J.</au><au>Roqué, Mercè</au><au>Friedman, Scott L.</au><au>Suzuki, Toru</au><au>Botella, Luisa M.</au><au>Bernabeu, Carmelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcription factor KLF6 upregulates expression of metalloprotease MMP14 and subsequent release of soluble endoglin during vascular injury</atitle><jtitle>Angiogenesis (London)</jtitle><stitle>Angiogenesis</stitle><addtitle>Angiogenesis</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>19</volume><issue>2</issue><spage>155</spage><epage>171</epage><pages>155-171</pages><issn>0969-6970</issn><eissn>1573-7209</eissn><coden>AGIOFT</coden><abstract>After endothelial injury, the transcription factor Krüppel-like factor 6 (KLF6) translocates into the cell nucleus to regulate a variety of target genes involved in angiogenesis, vascular repair and remodeling, including components of the membrane transforming growth factor beta (TGF-β) receptor complex such as endoglin and activin receptor-like kinase 1. The membrane metalloproteinase 14 (MMP14 or MT1-MMP) targets endoglin to release soluble endoglin and is involved in vascular inflammation and endothelial tubulogenesis. However, little is known about the regulation of MMP14 expression during vascular wounding. In vitro denudation of monolayers of human endothelial cell monolayers leads to an increase in the KLF6 gene transcriptional rate, followed by an upregulation of MMP14 and release of soluble endoglin. Concomitant with this process, MMP14 co-localizes with endoglin in the sprouting endothelial cells surrounding the wound border. MMP14 expression at mRNA and protein levels is increased by ectopic KLF6 and downregulated by KLF6 suppression in cultured endothelial cells. Moreover, after wire-induced endothelial denudation,
Klf6
+/−
mice show lower levels of MMP14 in their vasculature compared with their wild-type siblings. Ectopic cellular expression of KLF6 results in an increased transcription rate of MMP14, and chromatin immunoprecipitation assays show that KLF6 interacts with MMP14 promoter in ECs, this interaction being enhanced during wound healing. Furthermore, KLF6 markedly increases the transcriptional activity of different reporter constructs of MMP14 gene promoter. These results suggest that KLF6 regulates MMP14 transcription and is a critical player of the gene expression network triggered during endothelial repair.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>26850053</pmid><doi>10.1007/s10456-016-9495-8</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-6970 |
ispartof | Angiogenesis (London), 2016-04, Vol.19 (2), p.155-171 |
issn | 0969-6970 1573-7209 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4819519 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Animals Base Sequence Biomedical and Life Sciences Biomedicine Cancer Research Cardiology Cell Biology Computer Simulation Endoglin - genetics Endoglin - metabolism HEK293 Cells Human Umbilical Vein Endothelial Cells - metabolism Humans Kruppel-Like Factor 6 Kruppel-Like Transcription Factors - metabolism Matrix Metalloproteinase 14 - genetics Matrix Metalloproteinase 14 - metabolism Mice, Inbred C57BL Oncology Ophthalmology Original Paper Promoter Regions, Genetic - genetics Protein Binding Proto-Oncogene Proteins - metabolism RNA, Messenger - genetics RNA, Messenger - metabolism Solubility Transcription, Genetic Up-Regulation - genetics Vascular System Injuries - enzymology Vascular System Injuries - genetics Vascular System Injuries - pathology Wound Healing |
title | Transcription factor KLF6 upregulates expression of metalloprotease MMP14 and subsequent release of soluble endoglin during vascular injury |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcription%20factor%20KLF6%20upregulates%20expression%20of%20metalloprotease%20MMP14%20and%20subsequent%20release%20of%20soluble%20endoglin%20during%20vascular%20injury&rft.jtitle=Angiogenesis%20(London)&rft.au=Gallardo-Vara,%20Eunate&rft.date=2016-04-01&rft.volume=19&rft.issue=2&rft.spage=155&rft.epage=171&rft.pages=155-171&rft.issn=0969-6970&rft.eissn=1573-7209&rft.coden=AGIOFT&rft_id=info:doi/10.1007/s10456-016-9495-8&rft_dat=%3Cproquest_pubme%3E3997881301%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1775787911&rft_id=info:pmid/26850053&rfr_iscdi=true |