Embedded trees and the support of the ISE
Embedded trees are labelled rooted trees, where the root has zero label and where the labels of adjacent vertices differ (at most) by ±1. Recently it has been proved (see Chassaing and Schaeffer (2004) [8] and Janson and Marckert (2005) [11]) that the distribution of the maximum and minimum labels a...
Gespeichert in:
Veröffentlicht in: | European journal of combinatorics 2013-01, Vol.34 (1), p.123-137 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 137 |
---|---|
container_issue | 1 |
container_start_page | 123 |
container_title | European journal of combinatorics |
container_volume | 34 |
creator | Drmota, Michael |
description | Embedded trees are labelled rooted trees, where the root has zero label and where the labels of adjacent vertices differ (at most) by ±1. Recently it has been proved (see Chassaing and Schaeffer (2004) [8] and Janson and Marckert (2005) [11]) that the distribution of the maximum and minimum labels are closely related to the support of the density of the integrated superbrownian excursion (ISE). The purpose of this paper is to make this probabilistic limiting relation more explicit by using a generating function approach due to Bouttier et al. (2003) [6] that is based on properties of Jacobi’s θ-functions. In particular, we derive an integral representation of the joint distribution function of the supremum and infimum of the support of the ISE in terms of the Weierstrass ℘-function. Furthermore we re-derive the limiting radius distribution in random quadrangulations (by Chassaing and Schaeffer (2004) [8]) with the help of exact counting generating functions. |
doi_str_mv | 10.1016/j.ejc.2012.07.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4819021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0195669812001370</els_id><sourcerecordid>1859709565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-b60a4d795d0d48095d90a890a6108899079a30251ca4a6a10f5b7e257d76b1de3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMotlZ_gBfpUQ-7zuxuNhsEQUrVQsGDeg7ZZGq3tLs12S34701tFb14GGZC3rx5fIydI8QImF8vYlqYOAFMYhAxJHDA-giSR1IKPGR9wDDnuSx67MT7BQAiT9Nj1ksEFEIkvM-uxquSrCU7bB2RH-o6THMa-m69blw7bGZfz8nz-JQdzfTS09m-D9jr_fhl9BhNnx4mo7tpZDKObVTmoDMrJLdgsyKEsRJ0ESpHKAopQUidQsLR6EznGmHGS0EJF1bkJVpKB-x257vuyhVZQ3Xr9FKtXbXS7kM1ulJ_f-pqrt6ajcoKlJBgMLjcG7jmvSPfqlXlDS2Xuqam8woLLkUIlvMgxZ3UuMZ7R7OfMwhqi1gtVECstogVCBUQh52L3_l-Nr6ZBsHNTkCB0qYip7ypqDZkK0emVbap_rH_BNFFilA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859709565</pqid></control><display><type>article</type><title>Embedded trees and the support of the ISE</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Drmota, Michael</creator><creatorcontrib>Drmota, Michael</creatorcontrib><description>Embedded trees are labelled rooted trees, where the root has zero label and where the labels of adjacent vertices differ (at most) by ±1. Recently it has been proved (see Chassaing and Schaeffer (2004) [8] and Janson and Marckert (2005) [11]) that the distribution of the maximum and minimum labels are closely related to the support of the density of the integrated superbrownian excursion (ISE). The purpose of this paper is to make this probabilistic limiting relation more explicit by using a generating function approach due to Bouttier et al. (2003) [6] that is based on properties of Jacobi’s θ-functions. In particular, we derive an integral representation of the joint distribution function of the supremum and infimum of the support of the ISE in terms of the Weierstrass ℘-function. Furthermore we re-derive the limiting radius distribution in random quadrangulations (by Chassaing and Schaeffer (2004) [8]) with the help of exact counting generating functions.</description><identifier>ISSN: 0195-6698</identifier><identifier>EISSN: 1095-9971</identifier><identifier>DOI: 10.1016/j.ejc.2012.07.020</identifier><identifier>PMID: 27087725</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><ispartof>European journal of combinatorics, 2013-01, Vol.34 (1), p.123-137</ispartof><rights>2012 Elsevier Ltd</rights><rights>2013 Elsevier Ltd. 2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-b60a4d795d0d48095d90a890a6108899079a30251ca4a6a10f5b7e257d76b1de3</citedby><cites>FETCH-LOGICAL-c451t-b60a4d795d0d48095d90a890a6108899079a30251ca4a6a10f5b7e257d76b1de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0195669812001370$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27087725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drmota, Michael</creatorcontrib><title>Embedded trees and the support of the ISE</title><title>European journal of combinatorics</title><addtitle>Eur J Comb</addtitle><description>Embedded trees are labelled rooted trees, where the root has zero label and where the labels of adjacent vertices differ (at most) by ±1. Recently it has been proved (see Chassaing and Schaeffer (2004) [8] and Janson and Marckert (2005) [11]) that the distribution of the maximum and minimum labels are closely related to the support of the density of the integrated superbrownian excursion (ISE). The purpose of this paper is to make this probabilistic limiting relation more explicit by using a generating function approach due to Bouttier et al. (2003) [6] that is based on properties of Jacobi’s θ-functions. In particular, we derive an integral representation of the joint distribution function of the supremum and infimum of the support of the ISE in terms of the Weierstrass ℘-function. Furthermore we re-derive the limiting radius distribution in random quadrangulations (by Chassaing and Schaeffer (2004) [8]) with the help of exact counting generating functions.</description><issn>0195-6698</issn><issn>1095-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMotlZ_gBfpUQ-7zuxuNhsEQUrVQsGDeg7ZZGq3tLs12S34701tFb14GGZC3rx5fIydI8QImF8vYlqYOAFMYhAxJHDA-giSR1IKPGR9wDDnuSx67MT7BQAiT9Nj1ksEFEIkvM-uxquSrCU7bB2RH-o6THMa-m69blw7bGZfz8nz-JQdzfTS09m-D9jr_fhl9BhNnx4mo7tpZDKObVTmoDMrJLdgsyKEsRJ0ESpHKAopQUidQsLR6EznGmHGS0EJF1bkJVpKB-x257vuyhVZQ3Xr9FKtXbXS7kM1ulJ_f-pqrt6ajcoKlJBgMLjcG7jmvSPfqlXlDS2Xuqam8woLLkUIlvMgxZ3UuMZ7R7OfMwhqi1gtVECstogVCBUQh52L3_l-Nr6ZBsHNTkCB0qYip7ypqDZkK0emVbap_rH_BNFFilA</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Drmota, Michael</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201301</creationdate><title>Embedded trees and the support of the ISE</title><author>Drmota, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-b60a4d795d0d48095d90a890a6108899079a30251ca4a6a10f5b7e257d76b1de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drmota, Michael</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drmota, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embedded trees and the support of the ISE</atitle><jtitle>European journal of combinatorics</jtitle><addtitle>Eur J Comb</addtitle><date>2013-01</date><risdate>2013</risdate><volume>34</volume><issue>1</issue><spage>123</spage><epage>137</epage><pages>123-137</pages><issn>0195-6698</issn><eissn>1095-9971</eissn><abstract>Embedded trees are labelled rooted trees, where the root has zero label and where the labels of adjacent vertices differ (at most) by ±1. Recently it has been proved (see Chassaing and Schaeffer (2004) [8] and Janson and Marckert (2005) [11]) that the distribution of the maximum and minimum labels are closely related to the support of the density of the integrated superbrownian excursion (ISE). The purpose of this paper is to make this probabilistic limiting relation more explicit by using a generating function approach due to Bouttier et al. (2003) [6] that is based on properties of Jacobi’s θ-functions. In particular, we derive an integral representation of the joint distribution function of the supremum and infimum of the support of the ISE in terms of the Weierstrass ℘-function. Furthermore we re-derive the limiting radius distribution in random quadrangulations (by Chassaing and Schaeffer (2004) [8]) with the help of exact counting generating functions.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>27087725</pmid><doi>10.1016/j.ejc.2012.07.020</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0195-6698 |
ispartof | European journal of combinatorics, 2013-01, Vol.34 (1), p.123-137 |
issn | 0195-6698 1095-9971 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4819021 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
title | Embedded trees and the support of the ISE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A56%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embedded%20trees%20and%20the%20support%20of%20the%20ISE&rft.jtitle=European%20journal%20of%20combinatorics&rft.au=Drmota,%20Michael&rft.date=2013-01&rft.volume=34&rft.issue=1&rft.spage=123&rft.epage=137&rft.pages=123-137&rft.issn=0195-6698&rft.eissn=1095-9971&rft_id=info:doi/10.1016/j.ejc.2012.07.020&rft_dat=%3Cproquest_pubme%3E1859709565%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859709565&rft_id=info:pmid/27087725&rft_els_id=S0195669812001370&rfr_iscdi=true |