Embedded trees and the support of the ISE

Embedded trees are labelled rooted trees, where the root has zero label and where the labels of adjacent vertices differ (at most) by ±1. Recently it has been proved (see Chassaing and Schaeffer (2004) [8] and Janson and Marckert (2005) [11]) that the distribution of the maximum and minimum labels a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of combinatorics 2013-01, Vol.34 (1), p.123-137
1. Verfasser: Drmota, Michael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 137
container_issue 1
container_start_page 123
container_title European journal of combinatorics
container_volume 34
creator Drmota, Michael
description Embedded trees are labelled rooted trees, where the root has zero label and where the labels of adjacent vertices differ (at most) by ±1. Recently it has been proved (see Chassaing and Schaeffer (2004) [8] and Janson and Marckert (2005) [11]) that the distribution of the maximum and minimum labels are closely related to the support of the density of the integrated superbrownian excursion (ISE). The purpose of this paper is to make this probabilistic limiting relation more explicit by using a generating function approach due to Bouttier et al. (2003) [6] that is based on properties of Jacobi’s θ-functions. In particular, we derive an integral representation of the joint distribution function of the supremum and infimum of the support of the ISE in terms of the Weierstrass ℘-function. Furthermore we re-derive the limiting radius distribution in random quadrangulations (by Chassaing and Schaeffer (2004) [8]) with the help of exact counting generating functions.
doi_str_mv 10.1016/j.ejc.2012.07.020
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4819021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0195669812001370</els_id><sourcerecordid>1859709565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-b60a4d795d0d48095d90a890a6108899079a30251ca4a6a10f5b7e257d76b1de3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMotlZ_gBfpUQ-7zuxuNhsEQUrVQsGDeg7ZZGq3tLs12S34701tFb14GGZC3rx5fIydI8QImF8vYlqYOAFMYhAxJHDA-giSR1IKPGR9wDDnuSx67MT7BQAiT9Nj1ksEFEIkvM-uxquSrCU7bB2RH-o6THMa-m69blw7bGZfz8nz-JQdzfTS09m-D9jr_fhl9BhNnx4mo7tpZDKObVTmoDMrJLdgsyKEsRJ0ESpHKAopQUidQsLR6EznGmHGS0EJF1bkJVpKB-x257vuyhVZQ3Xr9FKtXbXS7kM1ulJ_f-pqrt6ajcoKlJBgMLjcG7jmvSPfqlXlDS2Xuqam8woLLkUIlvMgxZ3UuMZ7R7OfMwhqi1gtVECstogVCBUQh52L3_l-Nr6ZBsHNTkCB0qYip7ypqDZkK0emVbap_rH_BNFFilA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859709565</pqid></control><display><type>article</type><title>Embedded trees and the support of the ISE</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Drmota, Michael</creator><creatorcontrib>Drmota, Michael</creatorcontrib><description>Embedded trees are labelled rooted trees, where the root has zero label and where the labels of adjacent vertices differ (at most) by ±1. Recently it has been proved (see Chassaing and Schaeffer (2004) [8] and Janson and Marckert (2005) [11]) that the distribution of the maximum and minimum labels are closely related to the support of the density of the integrated superbrownian excursion (ISE). The purpose of this paper is to make this probabilistic limiting relation more explicit by using a generating function approach due to Bouttier et al. (2003) [6] that is based on properties of Jacobi’s θ-functions. In particular, we derive an integral representation of the joint distribution function of the supremum and infimum of the support of the ISE in terms of the Weierstrass ℘-function. Furthermore we re-derive the limiting radius distribution in random quadrangulations (by Chassaing and Schaeffer (2004) [8]) with the help of exact counting generating functions.</description><identifier>ISSN: 0195-6698</identifier><identifier>EISSN: 1095-9971</identifier><identifier>DOI: 10.1016/j.ejc.2012.07.020</identifier><identifier>PMID: 27087725</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><ispartof>European journal of combinatorics, 2013-01, Vol.34 (1), p.123-137</ispartof><rights>2012 Elsevier Ltd</rights><rights>2013 Elsevier Ltd. 2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-b60a4d795d0d48095d90a890a6108899079a30251ca4a6a10f5b7e257d76b1de3</citedby><cites>FETCH-LOGICAL-c451t-b60a4d795d0d48095d90a890a6108899079a30251ca4a6a10f5b7e257d76b1de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0195669812001370$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27087725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drmota, Michael</creatorcontrib><title>Embedded trees and the support of the ISE</title><title>European journal of combinatorics</title><addtitle>Eur J Comb</addtitle><description>Embedded trees are labelled rooted trees, where the root has zero label and where the labels of adjacent vertices differ (at most) by ±1. Recently it has been proved (see Chassaing and Schaeffer (2004) [8] and Janson and Marckert (2005) [11]) that the distribution of the maximum and minimum labels are closely related to the support of the density of the integrated superbrownian excursion (ISE). The purpose of this paper is to make this probabilistic limiting relation more explicit by using a generating function approach due to Bouttier et al. (2003) [6] that is based on properties of Jacobi’s θ-functions. In particular, we derive an integral representation of the joint distribution function of the supremum and infimum of the support of the ISE in terms of the Weierstrass ℘-function. Furthermore we re-derive the limiting radius distribution in random quadrangulations (by Chassaing and Schaeffer (2004) [8]) with the help of exact counting generating functions.</description><issn>0195-6698</issn><issn>1095-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMotlZ_gBfpUQ-7zuxuNhsEQUrVQsGDeg7ZZGq3tLs12S34701tFb14GGZC3rx5fIydI8QImF8vYlqYOAFMYhAxJHDA-giSR1IKPGR9wDDnuSx67MT7BQAiT9Nj1ksEFEIkvM-uxquSrCU7bB2RH-o6THMa-m69blw7bGZfz8nz-JQdzfTS09m-D9jr_fhl9BhNnx4mo7tpZDKObVTmoDMrJLdgsyKEsRJ0ESpHKAopQUidQsLR6EznGmHGS0EJF1bkJVpKB-x257vuyhVZQ3Xr9FKtXbXS7kM1ulJ_f-pqrt6ajcoKlJBgMLjcG7jmvSPfqlXlDS2Xuqam8woLLkUIlvMgxZ3UuMZ7R7OfMwhqi1gtVECstogVCBUQh52L3_l-Nr6ZBsHNTkCB0qYip7ypqDZkK0emVbap_rH_BNFFilA</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Drmota, Michael</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201301</creationdate><title>Embedded trees and the support of the ISE</title><author>Drmota, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-b60a4d795d0d48095d90a890a6108899079a30251ca4a6a10f5b7e257d76b1de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drmota, Michael</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drmota, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embedded trees and the support of the ISE</atitle><jtitle>European journal of combinatorics</jtitle><addtitle>Eur J Comb</addtitle><date>2013-01</date><risdate>2013</risdate><volume>34</volume><issue>1</issue><spage>123</spage><epage>137</epage><pages>123-137</pages><issn>0195-6698</issn><eissn>1095-9971</eissn><abstract>Embedded trees are labelled rooted trees, where the root has zero label and where the labels of adjacent vertices differ (at most) by ±1. Recently it has been proved (see Chassaing and Schaeffer (2004) [8] and Janson and Marckert (2005) [11]) that the distribution of the maximum and minimum labels are closely related to the support of the density of the integrated superbrownian excursion (ISE). The purpose of this paper is to make this probabilistic limiting relation more explicit by using a generating function approach due to Bouttier et al. (2003) [6] that is based on properties of Jacobi’s θ-functions. In particular, we derive an integral representation of the joint distribution function of the supremum and infimum of the support of the ISE in terms of the Weierstrass ℘-function. Furthermore we re-derive the limiting radius distribution in random quadrangulations (by Chassaing and Schaeffer (2004) [8]) with the help of exact counting generating functions.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>27087725</pmid><doi>10.1016/j.ejc.2012.07.020</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0195-6698
ispartof European journal of combinatorics, 2013-01, Vol.34 (1), p.123-137
issn 0195-6698
1095-9971
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4819021
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
title Embedded trees and the support of the ISE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A56%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embedded%20trees%20and%20the%20support%20of%20the%20ISE&rft.jtitle=European%20journal%20of%20combinatorics&rft.au=Drmota,%20Michael&rft.date=2013-01&rft.volume=34&rft.issue=1&rft.spage=123&rft.epage=137&rft.pages=123-137&rft.issn=0195-6698&rft.eissn=1095-9971&rft_id=info:doi/10.1016/j.ejc.2012.07.020&rft_dat=%3Cproquest_pubme%3E1859709565%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859709565&rft_id=info:pmid/27087725&rft_els_id=S0195669812001370&rfr_iscdi=true