Strained GaAs/InGaAs Core-Shell Nanowires for Photovoltaic Applications
We report on the successful growth of strained core-shell GaAs/InGaAs nanowires on Si (111) substrates by molecular beam epitaxy. The as-grown nanowires have a density in the order of 10 8 cm −2 , length between 3 and 3.5 μm, and diameter between 60 and 160 nm, depending on the shell growth duratio...
Gespeichert in:
Veröffentlicht in: | Nanoscale research letters 2016-12, Vol.11 (1), p.176-176, Article 176 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 176 |
---|---|
container_issue | 1 |
container_start_page | 176 |
container_title | Nanoscale research letters |
container_volume | 11 |
creator | Moratis, K. Tan, S. L. Germanis, S. Katsidis, C. Androulidaki, M. Tsagaraki, K. Hatzopoulos, Z. Donatini, F. Cibert, J. Niquet, Y. -M. Mariette, H. Pelekanos, N. T. |
description | We report on the successful growth of strained core-shell GaAs/InGaAs nanowires on Si (111) substrates by molecular beam epitaxy. The as-grown nanowires have a density in the order of 10
8
cm
−2
, length between 3 and 3.5 μm, and diameter between 60 and 160 nm, depending on the shell growth duration. By applying a range of characterization techniques, we conclude that the In incorporation in the nanowires is on average significantly smaller than what is nominally expected based on two-dimensional growth calibrations and exhibits a gradient along the nanowire axis. On the other hand, the observation of sharp dot-like emission features in the micro-photoluminescence spectra of single nanowires in the 900–1000-nm spectral range highlights the co-existence of In-rich enclosures with In content locally exceeding 30 %. |
doi_str_mv | 10.1186/s11671-016-1384-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4818650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808049094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-6d9d506c4c67ee9de1f375e7a53bfeea92b4bbe73cf245305dabbcb72004a49b3</originalsourceid><addsrcrecordid>eNqFkU9rFEEQxQdRTIx-AC8y4CUe2nRN_52LsCy6CSwqRMFb09NTk-0wO712z67st7eHiSEGxFM1Xb-qerxXFK-BvgfQ8iIBSAWEgiTANCfHJ8UpCCFJpeSPp_ldMyBKKHZSvEjpllKuqJLPi5NKUabqSp0Wq-sxWj9gW67sIl1cDVMplyEiud5g35ef7RB--Yip7EIsv27CGA6hH6135WK3672zow9Delk862yf8NVdPSu-f_r4bXlJ1l9WV8vFmjjB1EhkW7eCSsedVIh1i9AxJVBZwZoO0dZVw5sGFXNdxQWjorVN4xpVZe2W1w07Kz7Me3f7ZoutwyHr780u-q2NRxOsN393Br8xN-FguM6OCZoXvJsXbB6NXS7WZvqjwKDWEg6Q2fO7YzH83GMazdYnl12xA4Z9MqCpprymNf8_qpTmFATXGX37CL0N-zhk1yZK6aoSTGYKZsrFkFLE7l4sUDOlb-b0s15ppvTNMc-8eWjO_cSfuDNQzUDKreEG44PT_9z6GyNqup4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777822536</pqid></control><display><type>article</type><title>Strained GaAs/InGaAs Core-Shell Nanowires for Photovoltaic Applications</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Moratis, K. ; Tan, S. L. ; Germanis, S. ; Katsidis, C. ; Androulidaki, M. ; Tsagaraki, K. ; Hatzopoulos, Z. ; Donatini, F. ; Cibert, J. ; Niquet, Y. -M. ; Mariette, H. ; Pelekanos, N. T.</creator><creatorcontrib>Moratis, K. ; Tan, S. L. ; Germanis, S. ; Katsidis, C. ; Androulidaki, M. ; Tsagaraki, K. ; Hatzopoulos, Z. ; Donatini, F. ; Cibert, J. ; Niquet, Y. -M. ; Mariette, H. ; Pelekanos, N. T.</creatorcontrib><description>We report on the successful growth of strained core-shell GaAs/InGaAs nanowires on Si (111) substrates by molecular beam epitaxy. The as-grown nanowires have a density in the order of 10
8
cm
−2
, length between 3 and 3.5 μm, and diameter between 60 and 160 nm, depending on the shell growth duration. By applying a range of characterization techniques, we conclude that the In incorporation in the nanowires is on average significantly smaller than what is nominally expected based on two-dimensional growth calibrations and exhibits a gradient along the nanowire axis. On the other hand, the observation of sharp dot-like emission features in the micro-photoluminescence spectra of single nanowires in the 900–1000-nm spectral range highlights the co-existence of In-rich enclosures with In content locally exceeding 30 %.</description><identifier>ISSN: 1931-7573</identifier><identifier>EISSN: 1556-276X</identifier><identifier>DOI: 10.1186/s11671-016-1384-y</identifier><identifier>PMID: 27037927</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Calibration ; Chemistry and Materials Science ; Density ; Emission ; Gallium arsenide ; Materials Science ; Molecular beam epitaxy ; Molecular Medicine ; Nano Express ; Nanochemistry ; Nanoscale Science and Technology ; Nanostructures: Materials and Devices ; Nanotechnology ; Nanotechnology and Microengineering ; Nanowires ; Physics ; Silicon substrates ; Spectral emissivity</subject><ispartof>Nanoscale research letters, 2016-12, Vol.11 (1), p.176-176, Article 176</ispartof><rights>Moratis et al. 2016</rights><rights>The Author(s) 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-6d9d506c4c67ee9de1f375e7a53bfeea92b4bbe73cf245305dabbcb72004a49b3</citedby><cites>FETCH-LOGICAL-c537t-6d9d506c4c67ee9de1f375e7a53bfeea92b4bbe73cf245305dabbcb72004a49b3</cites><orcidid>0000-0002-4506-9613 ; 0000-0002-3365-0419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4818650/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4818650/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27037927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01319861$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Moratis, K.</creatorcontrib><creatorcontrib>Tan, S. L.</creatorcontrib><creatorcontrib>Germanis, S.</creatorcontrib><creatorcontrib>Katsidis, C.</creatorcontrib><creatorcontrib>Androulidaki, M.</creatorcontrib><creatorcontrib>Tsagaraki, K.</creatorcontrib><creatorcontrib>Hatzopoulos, Z.</creatorcontrib><creatorcontrib>Donatini, F.</creatorcontrib><creatorcontrib>Cibert, J.</creatorcontrib><creatorcontrib>Niquet, Y. -M.</creatorcontrib><creatorcontrib>Mariette, H.</creatorcontrib><creatorcontrib>Pelekanos, N. T.</creatorcontrib><title>Strained GaAs/InGaAs Core-Shell Nanowires for Photovoltaic Applications</title><title>Nanoscale research letters</title><addtitle>Nanoscale Res Lett</addtitle><addtitle>Nanoscale Res Lett</addtitle><description>We report on the successful growth of strained core-shell GaAs/InGaAs nanowires on Si (111) substrates by molecular beam epitaxy. The as-grown nanowires have a density in the order of 10
8
cm
−2
, length between 3 and 3.5 μm, and diameter between 60 and 160 nm, depending on the shell growth duration. By applying a range of characterization techniques, we conclude that the In incorporation in the nanowires is on average significantly smaller than what is nominally expected based on two-dimensional growth calibrations and exhibits a gradient along the nanowire axis. On the other hand, the observation of sharp dot-like emission features in the micro-photoluminescence spectra of single nanowires in the 900–1000-nm spectral range highlights the co-existence of In-rich enclosures with In content locally exceeding 30 %.</description><subject>Calibration</subject><subject>Chemistry and Materials Science</subject><subject>Density</subject><subject>Emission</subject><subject>Gallium arsenide</subject><subject>Materials Science</subject><subject>Molecular beam epitaxy</subject><subject>Molecular Medicine</subject><subject>Nano Express</subject><subject>Nanochemistry</subject><subject>Nanoscale Science and Technology</subject><subject>Nanostructures: Materials and Devices</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Nanowires</subject><subject>Physics</subject><subject>Silicon substrates</subject><subject>Spectral emissivity</subject><issn>1931-7573</issn><issn>1556-276X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU9rFEEQxQdRTIx-AC8y4CUe2nRN_52LsCy6CSwqRMFb09NTk-0wO712z67st7eHiSEGxFM1Xb-qerxXFK-BvgfQ8iIBSAWEgiTANCfHJ8UpCCFJpeSPp_ldMyBKKHZSvEjpllKuqJLPi5NKUabqSp0Wq-sxWj9gW67sIl1cDVMplyEiud5g35ef7RB--Yip7EIsv27CGA6hH6135WK3672zow9Delk862yf8NVdPSu-f_r4bXlJ1l9WV8vFmjjB1EhkW7eCSsedVIh1i9AxJVBZwZoO0dZVw5sGFXNdxQWjorVN4xpVZe2W1w07Kz7Me3f7ZoutwyHr780u-q2NRxOsN393Br8xN-FguM6OCZoXvJsXbB6NXS7WZvqjwKDWEg6Q2fO7YzH83GMazdYnl12xA4Z9MqCpprymNf8_qpTmFATXGX37CL0N-zhk1yZK6aoSTGYKZsrFkFLE7l4sUDOlb-b0s15ppvTNMc-8eWjO_cSfuDNQzUDKreEG44PT_9z6GyNqup4</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Moratis, K.</creator><creator>Tan, S. L.</creator><creator>Germanis, S.</creator><creator>Katsidis, C.</creator><creator>Androulidaki, M.</creator><creator>Tsagaraki, K.</creator><creator>Hatzopoulos, Z.</creator><creator>Donatini, F.</creator><creator>Cibert, J.</creator><creator>Niquet, Y. -M.</creator><creator>Mariette, H.</creator><creator>Pelekanos, N. T.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4506-9613</orcidid><orcidid>https://orcid.org/0000-0002-3365-0419</orcidid></search><sort><creationdate>20161201</creationdate><title>Strained GaAs/InGaAs Core-Shell Nanowires for Photovoltaic Applications</title><author>Moratis, K. ; Tan, S. L. ; Germanis, S. ; Katsidis, C. ; Androulidaki, M. ; Tsagaraki, K. ; Hatzopoulos, Z. ; Donatini, F. ; Cibert, J. ; Niquet, Y. -M. ; Mariette, H. ; Pelekanos, N. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-6d9d506c4c67ee9de1f375e7a53bfeea92b4bbe73cf245305dabbcb72004a49b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Calibration</topic><topic>Chemistry and Materials Science</topic><topic>Density</topic><topic>Emission</topic><topic>Gallium arsenide</topic><topic>Materials Science</topic><topic>Molecular beam epitaxy</topic><topic>Molecular Medicine</topic><topic>Nano Express</topic><topic>Nanochemistry</topic><topic>Nanoscale Science and Technology</topic><topic>Nanostructures: Materials and Devices</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Nanowires</topic><topic>Physics</topic><topic>Silicon substrates</topic><topic>Spectral emissivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moratis, K.</creatorcontrib><creatorcontrib>Tan, S. L.</creatorcontrib><creatorcontrib>Germanis, S.</creatorcontrib><creatorcontrib>Katsidis, C.</creatorcontrib><creatorcontrib>Androulidaki, M.</creatorcontrib><creatorcontrib>Tsagaraki, K.</creatorcontrib><creatorcontrib>Hatzopoulos, Z.</creatorcontrib><creatorcontrib>Donatini, F.</creatorcontrib><creatorcontrib>Cibert, J.</creatorcontrib><creatorcontrib>Niquet, Y. -M.</creatorcontrib><creatorcontrib>Mariette, H.</creatorcontrib><creatorcontrib>Pelekanos, N. T.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moratis, K.</au><au>Tan, S. L.</au><au>Germanis, S.</au><au>Katsidis, C.</au><au>Androulidaki, M.</au><au>Tsagaraki, K.</au><au>Hatzopoulos, Z.</au><au>Donatini, F.</au><au>Cibert, J.</au><au>Niquet, Y. -M.</au><au>Mariette, H.</au><au>Pelekanos, N. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strained GaAs/InGaAs Core-Shell Nanowires for Photovoltaic Applications</atitle><jtitle>Nanoscale research letters</jtitle><stitle>Nanoscale Res Lett</stitle><addtitle>Nanoscale Res Lett</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>11</volume><issue>1</issue><spage>176</spage><epage>176</epage><pages>176-176</pages><artnum>176</artnum><issn>1931-7573</issn><eissn>1556-276X</eissn><abstract>We report on the successful growth of strained core-shell GaAs/InGaAs nanowires on Si (111) substrates by molecular beam epitaxy. The as-grown nanowires have a density in the order of 10
8
cm
−2
, length between 3 and 3.5 μm, and diameter between 60 and 160 nm, depending on the shell growth duration. By applying a range of characterization techniques, we conclude that the In incorporation in the nanowires is on average significantly smaller than what is nominally expected based on two-dimensional growth calibrations and exhibits a gradient along the nanowire axis. On the other hand, the observation of sharp dot-like emission features in the micro-photoluminescence spectra of single nanowires in the 900–1000-nm spectral range highlights the co-existence of In-rich enclosures with In content locally exceeding 30 %.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>27037927</pmid><doi>10.1186/s11671-016-1384-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4506-9613</orcidid><orcidid>https://orcid.org/0000-0002-3365-0419</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-7573 |
ispartof | Nanoscale research letters, 2016-12, Vol.11 (1), p.176-176, Article 176 |
issn | 1931-7573 1556-276X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4818650 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Calibration Chemistry and Materials Science Density Emission Gallium arsenide Materials Science Molecular beam epitaxy Molecular Medicine Nano Express Nanochemistry Nanoscale Science and Technology Nanostructures: Materials and Devices Nanotechnology Nanotechnology and Microengineering Nanowires Physics Silicon substrates Spectral emissivity |
title | Strained GaAs/InGaAs Core-Shell Nanowires for Photovoltaic Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A58%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strained%20GaAs/InGaAs%20Core-Shell%20Nanowires%20for%20Photovoltaic%20Applications&rft.jtitle=Nanoscale%20research%20letters&rft.au=Moratis,%20K.&rft.date=2016-12-01&rft.volume=11&rft.issue=1&rft.spage=176&rft.epage=176&rft.pages=176-176&rft.artnum=176&rft.issn=1931-7573&rft.eissn=1556-276X&rft_id=info:doi/10.1186/s11671-016-1384-y&rft_dat=%3Cproquest_pubme%3E1808049094%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777822536&rft_id=info:pmid/27037927&rfr_iscdi=true |