Adsorption of water at the SrO surface of ruthenates

Although perovskite oxides hold promise in applications ranging from solid oxide fuel cells to catalysts, their surface chemistry is poorly understood at the molecular level. Here we follow the formation of the first monolayer of water at the (001) surfaces of Sr n +1 Ru n O 3 n +1 ( n = 1, 2) using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2016-04, Vol.15 (4), p.450-455
Hauptverfasser: Halwidl, Daniel, Stöger, Bernhard, Mayr-Schmölzer, Wernfried, Pavelec, Jiri, Fobes, David, Peng, Jin, Mao, Zhiqiang, Parkinson, Gareth S., Schmid, Michael, Mittendorfer, Florian, Redinger, Josef, Diebold, Ulrike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 455
container_issue 4
container_start_page 450
container_title Nature materials
container_volume 15
creator Halwidl, Daniel
Stöger, Bernhard
Mayr-Schmölzer, Wernfried
Pavelec, Jiri
Fobes, David
Peng, Jin
Mao, Zhiqiang
Parkinson, Gareth S.
Schmid, Michael
Mittendorfer, Florian
Redinger, Josef
Diebold, Ulrike
description Although perovskite oxides hold promise in applications ranging from solid oxide fuel cells to catalysts, their surface chemistry is poorly understood at the molecular level. Here we follow the formation of the first monolayer of water at the (001) surfaces of Sr n +1 Ru n O 3 n +1 ( n = 1, 2) using low-temperature scanning tunnelling microscopy, X-ray photoelectron spectroscopy, and density functional theory. These layered perovskites cleave between neighbouring SrO planes, yielding almost ideal, rocksalt-like surfaces. An adsorbed monomer dissociates and forms a pair of hydroxide ions. The OH stemming from the original molecule stays trapped at Sr–Sr bridge positions, circling the surface OH with a measured activation energy of 187 ± 10 meV. At higher coverage, dimers of dissociated water assemble into one-dimensional chains and form a percolating network where water adsorbs molecularly in the gaps. Our work shows the limitations of applying surface chemistry concepts derived for binary rocksalt oxides to perovskites. The interaction between perovskite oxides and water can have a significant influence on practical performance. Here the authors study the dynamics of surface water adsorption and hydroxide formation during monolayer formation on a ruthenate.
doi_str_mv 10.1038/nmat4512
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4817238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4023393221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-55d0e17d443d6c9c9ebe0b36c0afd72a73fe1aca1591543d71644b6321b6b283</originalsourceid><addsrcrecordid>eNqFkctKAzEUhoMotl7AJ5ABN7qo5uQ6sxGKeAOhC7sPmUymTpmZ1GRG8W18Fp_MFNt62bhKyP_x5SQ_QkeAzwHT9KJtdMc4kC00BCbFiAmBt1d7AEIGaC-EOcYEOBe7aECESDOg6RDxcRGcX3SVaxNXJq-6sz7RXdI92eTRT5LQ-1IbG7OPd9_H0zYS4QDtlLoO9nC17qPpzfX06m70MLm9vxo_jAyXvBtxXmALsmCMFsJkJrO5xTkVBuuykERLWlrQRgPPgEdGgmAsF5RALnKS0n10-aVd9HljC2PbzutaLXzVaP-mnK7U76StntTMvSiWgiR0KThdCbx77m3oVFMFY-tat9b1QUGKUyyzDLL_USn5cjKgET35g85d79v4EZFKAYSkTHwLjXcheFtu5gaslq2pdWsRPf75zg24rikCZ19AiFE7s_7HjX9ln1hxoFs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781167346</pqid></control><display><type>article</type><title>Adsorption of water at the SrO surface of ruthenates</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Halwidl, Daniel ; Stöger, Bernhard ; Mayr-Schmölzer, Wernfried ; Pavelec, Jiri ; Fobes, David ; Peng, Jin ; Mao, Zhiqiang ; Parkinson, Gareth S. ; Schmid, Michael ; Mittendorfer, Florian ; Redinger, Josef ; Diebold, Ulrike</creator><creatorcontrib>Halwidl, Daniel ; Stöger, Bernhard ; Mayr-Schmölzer, Wernfried ; Pavelec, Jiri ; Fobes, David ; Peng, Jin ; Mao, Zhiqiang ; Parkinson, Gareth S. ; Schmid, Michael ; Mittendorfer, Florian ; Redinger, Josef ; Diebold, Ulrike</creatorcontrib><description>Although perovskite oxides hold promise in applications ranging from solid oxide fuel cells to catalysts, their surface chemistry is poorly understood at the molecular level. Here we follow the formation of the first monolayer of water at the (001) surfaces of Sr n +1 Ru n O 3 n +1 ( n = 1, 2) using low-temperature scanning tunnelling microscopy, X-ray photoelectron spectroscopy, and density functional theory. These layered perovskites cleave between neighbouring SrO planes, yielding almost ideal, rocksalt-like surfaces. An adsorbed monomer dissociates and forms a pair of hydroxide ions. The OH stemming from the original molecule stays trapped at Sr–Sr bridge positions, circling the surface OH with a measured activation energy of 187 ± 10 meV. At higher coverage, dimers of dissociated water assemble into one-dimensional chains and form a percolating network where water adsorbs molecularly in the gaps. Our work shows the limitations of applying surface chemistry concepts derived for binary rocksalt oxides to perovskites. The interaction between perovskite oxides and water can have a significant influence on practical performance. Here the authors study the dynamics of surface water adsorption and hydroxide formation during monolayer formation on a ruthenate.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4512</identifier><identifier>PMID: 26689138</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 136/138 ; 140/146 ; 639/301/299 ; 639/638/542/968 ; Adsorption ; Biomaterials ; Catalysts ; Condensed Matter Physics ; Fuel cells ; Fuel technology ; Ions ; Low temperature ; Materials Science ; Metal oxides ; Microscopy ; Nanotechnology ; Neighbouring ; Networks ; Optical and Electronic Materials ; Oxides ; Perovskites ; Short range order ; Solid oxide fuel cells ; Spectroscopy ; Stemming ; Surface chemistry</subject><ispartof>Nature materials, 2016-04, Vol.15 (4), p.450-455</ispartof><rights>Springer Nature Limited 2016</rights><rights>Copyright Nature Publishing Group Apr 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-55d0e17d443d6c9c9ebe0b36c0afd72a73fe1aca1591543d71644b6321b6b283</citedby><cites>FETCH-LOGICAL-c575t-55d0e17d443d6c9c9ebe0b36c0afd72a73fe1aca1591543d71644b6321b6b283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat4512$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat4512$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26689138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Halwidl, Daniel</creatorcontrib><creatorcontrib>Stöger, Bernhard</creatorcontrib><creatorcontrib>Mayr-Schmölzer, Wernfried</creatorcontrib><creatorcontrib>Pavelec, Jiri</creatorcontrib><creatorcontrib>Fobes, David</creatorcontrib><creatorcontrib>Peng, Jin</creatorcontrib><creatorcontrib>Mao, Zhiqiang</creatorcontrib><creatorcontrib>Parkinson, Gareth S.</creatorcontrib><creatorcontrib>Schmid, Michael</creatorcontrib><creatorcontrib>Mittendorfer, Florian</creatorcontrib><creatorcontrib>Redinger, Josef</creatorcontrib><creatorcontrib>Diebold, Ulrike</creatorcontrib><title>Adsorption of water at the SrO surface of ruthenates</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Although perovskite oxides hold promise in applications ranging from solid oxide fuel cells to catalysts, their surface chemistry is poorly understood at the molecular level. Here we follow the formation of the first monolayer of water at the (001) surfaces of Sr n +1 Ru n O 3 n +1 ( n = 1, 2) using low-temperature scanning tunnelling microscopy, X-ray photoelectron spectroscopy, and density functional theory. These layered perovskites cleave between neighbouring SrO planes, yielding almost ideal, rocksalt-like surfaces. An adsorbed monomer dissociates and forms a pair of hydroxide ions. The OH stemming from the original molecule stays trapped at Sr–Sr bridge positions, circling the surface OH with a measured activation energy of 187 ± 10 meV. At higher coverage, dimers of dissociated water assemble into one-dimensional chains and form a percolating network where water adsorbs molecularly in the gaps. Our work shows the limitations of applying surface chemistry concepts derived for binary rocksalt oxides to perovskites. The interaction between perovskite oxides and water can have a significant influence on practical performance. Here the authors study the dynamics of surface water adsorption and hydroxide formation during monolayer formation on a ruthenate.</description><subject>119/118</subject><subject>136/138</subject><subject>140/146</subject><subject>639/301/299</subject><subject>639/638/542/968</subject><subject>Adsorption</subject><subject>Biomaterials</subject><subject>Catalysts</subject><subject>Condensed Matter Physics</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Ions</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Metal oxides</subject><subject>Microscopy</subject><subject>Nanotechnology</subject><subject>Neighbouring</subject><subject>Networks</subject><subject>Optical and Electronic Materials</subject><subject>Oxides</subject><subject>Perovskites</subject><subject>Short range order</subject><subject>Solid oxide fuel cells</subject><subject>Spectroscopy</subject><subject>Stemming</subject><subject>Surface chemistry</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkctKAzEUhoMotl7AJ5ABN7qo5uQ6sxGKeAOhC7sPmUymTpmZ1GRG8W18Fp_MFNt62bhKyP_x5SQ_QkeAzwHT9KJtdMc4kC00BCbFiAmBt1d7AEIGaC-EOcYEOBe7aECESDOg6RDxcRGcX3SVaxNXJq-6sz7RXdI92eTRT5LQ-1IbG7OPd9_H0zYS4QDtlLoO9nC17qPpzfX06m70MLm9vxo_jAyXvBtxXmALsmCMFsJkJrO5xTkVBuuykERLWlrQRgPPgEdGgmAsF5RALnKS0n10-aVd9HljC2PbzutaLXzVaP-mnK7U76StntTMvSiWgiR0KThdCbx77m3oVFMFY-tat9b1QUGKUyyzDLL_USn5cjKgET35g85d79v4EZFKAYSkTHwLjXcheFtu5gaslq2pdWsRPf75zg24rikCZ19AiFE7s_7HjX9ln1hxoFs</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Halwidl, Daniel</creator><creator>Stöger, Bernhard</creator><creator>Mayr-Schmölzer, Wernfried</creator><creator>Pavelec, Jiri</creator><creator>Fobes, David</creator><creator>Peng, Jin</creator><creator>Mao, Zhiqiang</creator><creator>Parkinson, Gareth S.</creator><creator>Schmid, Michael</creator><creator>Mittendorfer, Florian</creator><creator>Redinger, Josef</creator><creator>Diebold, Ulrike</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20160401</creationdate><title>Adsorption of water at the SrO surface of ruthenates</title><author>Halwidl, Daniel ; Stöger, Bernhard ; Mayr-Schmölzer, Wernfried ; Pavelec, Jiri ; Fobes, David ; Peng, Jin ; Mao, Zhiqiang ; Parkinson, Gareth S. ; Schmid, Michael ; Mittendorfer, Florian ; Redinger, Josef ; Diebold, Ulrike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-55d0e17d443d6c9c9ebe0b36c0afd72a73fe1aca1591543d71644b6321b6b283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>119/118</topic><topic>136/138</topic><topic>140/146</topic><topic>639/301/299</topic><topic>639/638/542/968</topic><topic>Adsorption</topic><topic>Biomaterials</topic><topic>Catalysts</topic><topic>Condensed Matter Physics</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Ions</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Metal oxides</topic><topic>Microscopy</topic><topic>Nanotechnology</topic><topic>Neighbouring</topic><topic>Networks</topic><topic>Optical and Electronic Materials</topic><topic>Oxides</topic><topic>Perovskites</topic><topic>Short range order</topic><topic>Solid oxide fuel cells</topic><topic>Spectroscopy</topic><topic>Stemming</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halwidl, Daniel</creatorcontrib><creatorcontrib>Stöger, Bernhard</creatorcontrib><creatorcontrib>Mayr-Schmölzer, Wernfried</creatorcontrib><creatorcontrib>Pavelec, Jiri</creatorcontrib><creatorcontrib>Fobes, David</creatorcontrib><creatorcontrib>Peng, Jin</creatorcontrib><creatorcontrib>Mao, Zhiqiang</creatorcontrib><creatorcontrib>Parkinson, Gareth S.</creatorcontrib><creatorcontrib>Schmid, Michael</creatorcontrib><creatorcontrib>Mittendorfer, Florian</creatorcontrib><creatorcontrib>Redinger, Josef</creatorcontrib><creatorcontrib>Diebold, Ulrike</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halwidl, Daniel</au><au>Stöger, Bernhard</au><au>Mayr-Schmölzer, Wernfried</au><au>Pavelec, Jiri</au><au>Fobes, David</au><au>Peng, Jin</au><au>Mao, Zhiqiang</au><au>Parkinson, Gareth S.</au><au>Schmid, Michael</au><au>Mittendorfer, Florian</au><au>Redinger, Josef</au><au>Diebold, Ulrike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption of water at the SrO surface of ruthenates</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>15</volume><issue>4</issue><spage>450</spage><epage>455</epage><pages>450-455</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Although perovskite oxides hold promise in applications ranging from solid oxide fuel cells to catalysts, their surface chemistry is poorly understood at the molecular level. Here we follow the formation of the first monolayer of water at the (001) surfaces of Sr n +1 Ru n O 3 n +1 ( n = 1, 2) using low-temperature scanning tunnelling microscopy, X-ray photoelectron spectroscopy, and density functional theory. These layered perovskites cleave between neighbouring SrO planes, yielding almost ideal, rocksalt-like surfaces. An adsorbed monomer dissociates and forms a pair of hydroxide ions. The OH stemming from the original molecule stays trapped at Sr–Sr bridge positions, circling the surface OH with a measured activation energy of 187 ± 10 meV. At higher coverage, dimers of dissociated water assemble into one-dimensional chains and form a percolating network where water adsorbs molecularly in the gaps. Our work shows the limitations of applying surface chemistry concepts derived for binary rocksalt oxides to perovskites. The interaction between perovskite oxides and water can have a significant influence on practical performance. Here the authors study the dynamics of surface water adsorption and hydroxide formation during monolayer formation on a ruthenate.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26689138</pmid><doi>10.1038/nmat4512</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2016-04, Vol.15 (4), p.450-455
issn 1476-1122
1476-4660
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4817238
source SpringerLink Journals; Nature Journals Online
subjects 119/118
136/138
140/146
639/301/299
639/638/542/968
Adsorption
Biomaterials
Catalysts
Condensed Matter Physics
Fuel cells
Fuel technology
Ions
Low temperature
Materials Science
Metal oxides
Microscopy
Nanotechnology
Neighbouring
Networks
Optical and Electronic Materials
Oxides
Perovskites
Short range order
Solid oxide fuel cells
Spectroscopy
Stemming
Surface chemistry
title Adsorption of water at the SrO surface of ruthenates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A44%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20of%20water%20at%20the%20SrO%20surface%20of%C2%A0ruthenates&rft.jtitle=Nature%20materials&rft.au=Halwidl,%20Daniel&rft.date=2016-04-01&rft.volume=15&rft.issue=4&rft.spage=450&rft.epage=455&rft.pages=450-455&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4512&rft_dat=%3Cproquest_pubme%3E4023393221%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1781167346&rft_id=info:pmid/26689138&rfr_iscdi=true