mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR

Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORCI) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell research 2016-01, Vol.26 (1), p.46-65
Hauptverfasser: Yin, Yancun, Hua, Hui, Li, Minjing, Liu, Shu, Kong, Qingbin, Shao, Ting, Wang, Jiao, Luo, Yuanming, Wang, Qian, Luo, Ting, Jiang, Yangfu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65
container_issue 1
container_start_page 46
container_title Cell research
container_volume 26
creator Yin, Yancun
Hua, Hui
Li, Minjing
Liu, Shu
Kong, Qingbin
Shao, Ting
Wang, Jiao
Luo, Yuanming
Wang, Qian
Luo, Ting
Jiang, Yangfu
description Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORCI) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how roTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unex- pected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and ac- tivation of IGF-IR/InsR, which is largely dependent on rictor and mTOIL Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamyeinor ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombi- nant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/llS1, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor+/+ MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor-/- MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyrll31 in IGF-IR or Tyrl146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation.
doi_str_mv 10.1038/cr.2015.133
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4816127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>668483890</cqvip_id><sourcerecordid>3911538021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-4d6613e2f617505af8f594c322838bb8277d5f7dc15d92b14b3742885a6028ef3</originalsourceid><addsrcrecordid>eNptkU1r3DAQhkVpaT7aU-9FtJdA660-be0lUJZ-BAKBkp6FLMu2EltyJDllf0H_dmV2s2xLTzNoHr3zzgwAbzBaYUTFJx1WBGG-wpQ-A6e4YqKoBBXPc44QLlCJyAk4i_EOIcIZxy_BCSm5YCVDp-D3eHvzY0PgFPzok4kwbScDr6B1cR6sKwZ7b2AX_K_Uw1bp5AMMRptpSZRrnrijR53so0rWO5j64Oeuz9Fk2eCjdQbeW6ei2WE2baFv4WLhFXjRqiGa1_t4Dn5-_XK7-V5c33y72ny-LjRnNBWsKUtMDWlLXHHEVStavmaaEpInrmtBqqrhbdVozJs1qTGracWIEFzlLQjT0nNwudOd5no0jTYuBTXIKdhRha30ysq_K872svOPkglcYlJlgYu9QPAPs4lJjjZqMwzKGT9HmX0xtKYVxhl9_w965-fg8ngLlT1zQVimPuwonTcUg2kPZjCSy4GlDnI5sMwHzvTbY_8H9umiGfi4A2Iuuc6Eo6b_1Xu379571z3kHwfJshQsb3WN6B-YPryl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753225824</pqid></control><display><type>article</type><title>mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Yin, Yancun ; Hua, Hui ; Li, Minjing ; Liu, Shu ; Kong, Qingbin ; Shao, Ting ; Wang, Jiao ; Luo, Yuanming ; Wang, Qian ; Luo, Ting ; Jiang, Yangfu</creator><creatorcontrib>Yin, Yancun ; Hua, Hui ; Li, Minjing ; Liu, Shu ; Kong, Qingbin ; Shao, Ting ; Wang, Jiao ; Luo, Yuanming ; Wang, Qian ; Luo, Ting ; Jiang, Yangfu</creatorcontrib><description>Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORCI) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how roTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unex- pected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and ac- tivation of IGF-IR/InsR, which is largely dependent on rictor and mTOIL Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamyeinor ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombi- nant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/llS1, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor+/+ MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor-/- MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyrll31 in IGF-IR or Tyrl146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation.</description><identifier>ISSN: 1001-0602</identifier><identifier>EISSN: 1748-7838</identifier><identifier>DOI: 10.1038/cr.2015.133</identifier><identifier>PMID: 26584640</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/173 ; 631/45/607/275 ; 631/80/458/1733 ; 631/80/86 ; Biomedical and Life Sciences ; Carrier Proteins - metabolism ; Cell Biology ; Cell Line, Tumor ; Cell Proliferation ; HEK293 Cells ; Hep G2 Cells ; Humans ; IGF-IR ; Life Sciences ; Mechanistic Target of Rapamycin Complex 2 ; mTOR ; Multiprotein Complexes - metabolism ; Original ; original-article ; Phosphorylation ; Protein-Tyrosine Kinases - metabolism ; Rapamycin-Insensitive Companion of mTOR Protein ; Receptor, IGF Type 1 - metabolism ; Receptor, Insulin - metabolism ; R蛋白 ; Sirolimus - metabolism ; TOR Serine-Threonine Kinases - metabolism ; Tyrosine - metabolism ; 激活 ; 激酶活性 ; 胰岛素受体底物 ; 胰岛素样生长因子 ; 酪氨酸磷酸化</subject><ispartof>Cell research, 2016-01, Vol.26 (1), p.46-65</ispartof><rights>Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2016</rights><rights>Copyright Nature Publishing Group Jan 2016</rights><rights>Copyright © 2016 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2016 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-4d6613e2f617505af8f594c322838bb8277d5f7dc15d92b14b3742885a6028ef3</citedby><cites>FETCH-LOGICAL-c543t-4d6613e2f617505af8f594c322838bb8277d5f7dc15d92b14b3742885a6028ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85240X/85240X.jpg</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4816127/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4816127/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26584640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Yancun</creatorcontrib><creatorcontrib>Hua, Hui</creatorcontrib><creatorcontrib>Li, Minjing</creatorcontrib><creatorcontrib>Liu, Shu</creatorcontrib><creatorcontrib>Kong, Qingbin</creatorcontrib><creatorcontrib>Shao, Ting</creatorcontrib><creatorcontrib>Wang, Jiao</creatorcontrib><creatorcontrib>Luo, Yuanming</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Luo, Ting</creatorcontrib><creatorcontrib>Jiang, Yangfu</creatorcontrib><title>mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR</title><title>Cell research</title><addtitle>Cell Res</addtitle><addtitle>Cell Research</addtitle><description>Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORCI) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how roTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unex- pected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and ac- tivation of IGF-IR/InsR, which is largely dependent on rictor and mTOIL Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamyeinor ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombi- nant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/llS1, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor+/+ MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor-/- MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyrll31 in IGF-IR or Tyrl146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation.</description><subject>631/45/173</subject><subject>631/45/607/275</subject><subject>631/80/458/1733</subject><subject>631/80/86</subject><subject>Biomedical and Life Sciences</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>HEK293 Cells</subject><subject>Hep G2 Cells</subject><subject>Humans</subject><subject>IGF-IR</subject><subject>Life Sciences</subject><subject>Mechanistic Target of Rapamycin Complex 2</subject><subject>mTOR</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Original</subject><subject>original-article</subject><subject>Phosphorylation</subject><subject>Protein-Tyrosine Kinases - metabolism</subject><subject>Rapamycin-Insensitive Companion of mTOR Protein</subject><subject>Receptor, IGF Type 1 - metabolism</subject><subject>Receptor, Insulin - metabolism</subject><subject>R蛋白</subject><subject>Sirolimus - metabolism</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Tyrosine - metabolism</subject><subject>激活</subject><subject>激酶活性</subject><subject>胰岛素受体底物</subject><subject>胰岛素样生长因子</subject><subject>酪氨酸磷酸化</subject><issn>1001-0602</issn><issn>1748-7838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkU1r3DAQhkVpaT7aU-9FtJdA660-be0lUJZ-BAKBkp6FLMu2EltyJDllf0H_dmV2s2xLTzNoHr3zzgwAbzBaYUTFJx1WBGG-wpQ-A6e4YqKoBBXPc44QLlCJyAk4i_EOIcIZxy_BCSm5YCVDp-D3eHvzY0PgFPzok4kwbScDr6B1cR6sKwZ7b2AX_K_Uw1bp5AMMRptpSZRrnrijR53so0rWO5j64Oeuz9Fk2eCjdQbeW6ei2WE2baFv4WLhFXjRqiGa1_t4Dn5-_XK7-V5c33y72ny-LjRnNBWsKUtMDWlLXHHEVStavmaaEpInrmtBqqrhbdVozJs1qTGracWIEFzlLQjT0nNwudOd5no0jTYuBTXIKdhRha30ysq_K872svOPkglcYlJlgYu9QPAPs4lJjjZqMwzKGT9HmX0xtKYVxhl9_w965-fg8ngLlT1zQVimPuwonTcUg2kPZjCSy4GlDnI5sMwHzvTbY_8H9umiGfi4A2Iuuc6Eo6b_1Xu379571z3kHwfJshQsb3WN6B-YPryl</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Yin, Yancun</creator><creator>Hua, Hui</creator><creator>Li, Minjing</creator><creator>Liu, Shu</creator><creator>Kong, Qingbin</creator><creator>Shao, Ting</creator><creator>Wang, Jiao</creator><creator>Luo, Yuanming</creator><creator>Wang, Qian</creator><creator>Luo, Ting</creator><creator>Jiang, Yangfu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>WU4</scope><scope>~WA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160101</creationdate><title>mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR</title><author>Yin, Yancun ; Hua, Hui ; Li, Minjing ; Liu, Shu ; Kong, Qingbin ; Shao, Ting ; Wang, Jiao ; Luo, Yuanming ; Wang, Qian ; Luo, Ting ; Jiang, Yangfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-4d6613e2f617505af8f594c322838bb8277d5f7dc15d92b14b3742885a6028ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/45/173</topic><topic>631/45/607/275</topic><topic>631/80/458/1733</topic><topic>631/80/86</topic><topic>Biomedical and Life Sciences</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>HEK293 Cells</topic><topic>Hep G2 Cells</topic><topic>Humans</topic><topic>IGF-IR</topic><topic>Life Sciences</topic><topic>Mechanistic Target of Rapamycin Complex 2</topic><topic>mTOR</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Original</topic><topic>original-article</topic><topic>Phosphorylation</topic><topic>Protein-Tyrosine Kinases - metabolism</topic><topic>Rapamycin-Insensitive Companion of mTOR Protein</topic><topic>Receptor, IGF Type 1 - metabolism</topic><topic>Receptor, Insulin - metabolism</topic><topic>R蛋白</topic><topic>Sirolimus - metabolism</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Tyrosine - metabolism</topic><topic>激活</topic><topic>激酶活性</topic><topic>胰岛素受体底物</topic><topic>胰岛素样生长因子</topic><topic>酪氨酸磷酸化</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Yancun</creatorcontrib><creatorcontrib>Hua, Hui</creatorcontrib><creatorcontrib>Li, Minjing</creatorcontrib><creatorcontrib>Liu, Shu</creatorcontrib><creatorcontrib>Kong, Qingbin</creatorcontrib><creatorcontrib>Shao, Ting</creatorcontrib><creatorcontrib>Wang, Jiao</creatorcontrib><creatorcontrib>Luo, Yuanming</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Luo, Ting</creatorcontrib><creatorcontrib>Jiang, Yangfu</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库-自然科学-生物科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Yancun</au><au>Hua, Hui</au><au>Li, Minjing</au><au>Liu, Shu</au><au>Kong, Qingbin</au><au>Shao, Ting</au><au>Wang, Jiao</au><au>Luo, Yuanming</au><au>Wang, Qian</au><au>Luo, Ting</au><au>Jiang, Yangfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR</atitle><jtitle>Cell research</jtitle><stitle>Cell Res</stitle><addtitle>Cell Research</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>26</volume><issue>1</issue><spage>46</spage><epage>65</epage><pages>46-65</pages><issn>1001-0602</issn><eissn>1748-7838</eissn><abstract>Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORCI) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how roTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unex- pected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and ac- tivation of IGF-IR/InsR, which is largely dependent on rictor and mTOIL Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamyeinor ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombi- nant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/llS1, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor+/+ MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor-/- MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyrll31 in IGF-IR or Tyrl146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26584640</pmid><doi>10.1038/cr.2015.133</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1001-0602
ispartof Cell research, 2016-01, Vol.26 (1), p.46-65
issn 1001-0602
1748-7838
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4816127
source MEDLINE; SpringerLink Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 631/45/173
631/45/607/275
631/80/458/1733
631/80/86
Biomedical and Life Sciences
Carrier Proteins - metabolism
Cell Biology
Cell Line, Tumor
Cell Proliferation
HEK293 Cells
Hep G2 Cells
Humans
IGF-IR
Life Sciences
Mechanistic Target of Rapamycin Complex 2
mTOR
Multiprotein Complexes - metabolism
Original
original-article
Phosphorylation
Protein-Tyrosine Kinases - metabolism
Rapamycin-Insensitive Companion of mTOR Protein
Receptor, IGF Type 1 - metabolism
Receptor, Insulin - metabolism
R蛋白
Sirolimus - metabolism
TOR Serine-Threonine Kinases - metabolism
Tyrosine - metabolism
激活
激酶活性
胰岛素受体底物
胰岛素样生长因子
酪氨酸磷酸化
title mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mTORC2%20promotes%20type%20I%20insulin-like%20growth%20factor%20receptor%20and%20insulin%20receptor%20activation%20through%20the%20tyrosine%20kinase%20activity%20of%20mTOR&rft.jtitle=Cell%20research&rft.au=Yin,%20Yancun&rft.date=2016-01-01&rft.volume=26&rft.issue=1&rft.spage=46&rft.epage=65&rft.pages=46-65&rft.issn=1001-0602&rft.eissn=1748-7838&rft_id=info:doi/10.1038/cr.2015.133&rft_dat=%3Cproquest_pubme%3E3911538021%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753225824&rft_id=info:pmid/26584640&rft_cqvip_id=668483890&rfr_iscdi=true