PreImplantation Factor bolsters neuroprotection via modulating Protein Kinase A and Protein Kinase C signaling
A synthetic peptide (sPIF) analogous to the mammalian embryo-derived PreImplantation Factor (PIF) enables neuroprotection in rodent models of experimental autoimmune encephalomyelitis and perinatal brain injury. The protective effects have been attributed, in part, to sPIF’s ability to inhibit the b...
Gespeichert in:
Veröffentlicht in: | Cell death and differentiation 2015-12, Vol.22 (12), p.2078-2086 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2086 |
---|---|
container_issue | 12 |
container_start_page | 2078 |
container_title | Cell death and differentiation |
container_volume | 22 |
creator | Mueller, M Schoeberlein, A Zhou, J Joerger-Messerli, M Oppliger, B Reinhart, U Bordey, A Surbek, D Barnea, E R Huang, Y Paidas, M |
description | A synthetic peptide (sPIF) analogous to the mammalian embryo-derived PreImplantation Factor (PIF) enables neuroprotection in rodent models of experimental autoimmune encephalomyelitis and perinatal brain injury. The protective effects have been attributed, in part, to sPIF’s ability to inhibit the biogenesis of microRNA let-7, which is released from injured cells during central nervous system (CNS) damage and induces neuronal death. Here, we uncover another novel mechanism of sPIF-mediated neuroprotection. Using a clinically relevant rat newborn brain injury model, we demonstrate that sPIF, when subcutaneously administrated, is able to reduce cell death, reverse neuronal loss and restore proper cortical architecture. We show, both
in vivo
and
in vitro
, that sPIF activates cyclic AMP dependent protein kinase (PKA) and calcium-dependent protein kinase (PKC) signaling, leading to increased phosphorylation of major neuroprotective substrates GAP-43, BAD and CREB. Phosphorylated CREB in turn facilitates expression of
Gap43, Bdnf
and
Bcl2
known to have important roles in regulating neuronal growth, survival and remodeling. As is the case in sPIF-mediated let-7 repression, we provide evidence that sPIF-mediated PKA/PKC activation is dependent on TLR4 expression. Thus, we propose that sPIF imparts neuroprotection via multiple mechanisms at multiple levels downstream of TLR4. Given the recent FDA fast-track approval of sPIF for clinical trials, its potential clinical application for treating other CNS diseases can be envisioned. |
doi_str_mv | 10.1038/cdd.2015.55 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4816111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1837313991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-8d8dd4f0dbd4bfffe75245bb39713c8066c95ec1981483a56b023817ef5e85c33</originalsourceid><addsrcrecordid>eNqNkU1LHTEYhUOp1K-uui-Bbgrt3CaT701BLtWKQl3oOmSSzG1kJrlNZgT_vbleFZUuXL3hPQ8nyTkAfMJogRGRP6xzixZhtmDsHdjDVPCGUUTe1zNhqFGIil2wX8o1QogLxT-A3ZYpwQkieyBeZH86rgcTJzOFFOGxsVPKsEtDmXwuMPo5p3VOk7f3-k0wcExuHioeV_Bio4QIz0I0xcMjaKJ7vVzCElbRDJU_BDu9GYr_-DAPwNXxr8vl7-b8z8np8ui8sYyqqZFOOkd75DpHu77vvWAtZV1HlMDESsS5VcxbrCSmkhjGO9QSiYXvmZfMEnIAfm5913M3emd9nLIZ9DqH0eRbnUzQL5UY_upVutFUYo4xrgZfHwxy-jf7MukxFOuHGpRPc9FYEkEwUeoNqCAtQaLFtKJfXqHXac41mnsKC86Z2lDftpTNqZTs-6d3Y6Q3letaud5Urhmr9OfnX31iHzuuwPctUKoUVz4_u_Q_fnepkLcq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1731766594</pqid></control><display><type>article</type><title>PreImplantation Factor bolsters neuroprotection via modulating Protein Kinase A and Protein Kinase C signaling</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Mueller, M ; Schoeberlein, A ; Zhou, J ; Joerger-Messerli, M ; Oppliger, B ; Reinhart, U ; Bordey, A ; Surbek, D ; Barnea, E R ; Huang, Y ; Paidas, M</creator><creatorcontrib>Mueller, M ; Schoeberlein, A ; Zhou, J ; Joerger-Messerli, M ; Oppliger, B ; Reinhart, U ; Bordey, A ; Surbek, D ; Barnea, E R ; Huang, Y ; Paidas, M</creatorcontrib><description>A synthetic peptide (sPIF) analogous to the mammalian embryo-derived PreImplantation Factor (PIF) enables neuroprotection in rodent models of experimental autoimmune encephalomyelitis and perinatal brain injury. The protective effects have been attributed, in part, to sPIF’s ability to inhibit the biogenesis of microRNA let-7, which is released from injured cells during central nervous system (CNS) damage and induces neuronal death. Here, we uncover another novel mechanism of sPIF-mediated neuroprotection. Using a clinically relevant rat newborn brain injury model, we demonstrate that sPIF, when subcutaneously administrated, is able to reduce cell death, reverse neuronal loss and restore proper cortical architecture. We show, both
in vivo
and
in vitro
, that sPIF activates cyclic AMP dependent protein kinase (PKA) and calcium-dependent protein kinase (PKC) signaling, leading to increased phosphorylation of major neuroprotective substrates GAP-43, BAD and CREB. Phosphorylated CREB in turn facilitates expression of
Gap43, Bdnf
and
Bcl2
known to have important roles in regulating neuronal growth, survival and remodeling. As is the case in sPIF-mediated let-7 repression, we provide evidence that sPIF-mediated PKA/PKC activation is dependent on TLR4 expression. Thus, we propose that sPIF imparts neuroprotection via multiple mechanisms at multiple levels downstream of TLR4. Given the recent FDA fast-track approval of sPIF for clinical trials, its potential clinical application for treating other CNS diseases can be envisioned.</description><identifier>ISSN: 1350-9047</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/cdd.2015.55</identifier><identifier>PMID: 25976303</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/106 ; 13/2 ; 13/51 ; 13/95 ; 38/22 ; 38/77 ; 38/89 ; 631/378 ; 82/80 ; Animals ; Apoptosis ; bcl-Associated Death Protein - genetics ; bcl-Associated Death Protein - metabolism ; Biochemistry ; Biomedical and Life Sciences ; Brain Injuries - metabolism ; Brain Injuries - pathology ; Cell Biology ; Cell Cycle Analysis ; Cell Line, Tumor ; Cell Survival - drug effects ; Cyclic AMP - metabolism ; Cyclic AMP Response Element-Binding Protein - genetics ; Cyclic AMP Response Element-Binding Protein - metabolism ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Disease Models, Animal ; GAP-43 Protein - genetics ; GAP-43 Protein - metabolism ; Life Sciences ; Mice ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Neuroprotective Agents - chemical synthesis ; Neuroprotective Agents - pharmacology ; Original Paper ; Peptides - chemical synthesis ; Peptides - pharmacology ; Protein Kinase C - metabolism ; Proto-Oncogene Proteins c-bcl-2 - genetics ; Proto-Oncogene Proteins c-bcl-2 - metabolism ; Rats ; RNA Interference ; Signal Transduction - drug effects ; Stem Cells ; Toll-Like Receptor 4 - antagonists & inhibitors ; Toll-Like Receptor 4 - genetics ; Toll-Like Receptor 4 - metabolism</subject><ispartof>Cell death and differentiation, 2015-12, Vol.22 (12), p.2078-2086</ispartof><rights>Macmillan Publishers Limited 2015</rights><rights>Copyright Nature Publishing Group Dec 2015</rights><rights>Copyright © 2015 Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-8d8dd4f0dbd4bfffe75245bb39713c8066c95ec1981483a56b023817ef5e85c33</citedby><cites>FETCH-LOGICAL-c549t-8d8dd4f0dbd4bfffe75245bb39713c8066c95ec1981483a56b023817ef5e85c33</cites><orcidid>0000-0002-6716-9551 ; 0000-0002-0727-4034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4816111/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4816111/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25976303$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mueller, M</creatorcontrib><creatorcontrib>Schoeberlein, A</creatorcontrib><creatorcontrib>Zhou, J</creatorcontrib><creatorcontrib>Joerger-Messerli, M</creatorcontrib><creatorcontrib>Oppliger, B</creatorcontrib><creatorcontrib>Reinhart, U</creatorcontrib><creatorcontrib>Bordey, A</creatorcontrib><creatorcontrib>Surbek, D</creatorcontrib><creatorcontrib>Barnea, E R</creatorcontrib><creatorcontrib>Huang, Y</creatorcontrib><creatorcontrib>Paidas, M</creatorcontrib><title>PreImplantation Factor bolsters neuroprotection via modulating Protein Kinase A and Protein Kinase C signaling</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>A synthetic peptide (sPIF) analogous to the mammalian embryo-derived PreImplantation Factor (PIF) enables neuroprotection in rodent models of experimental autoimmune encephalomyelitis and perinatal brain injury. The protective effects have been attributed, in part, to sPIF’s ability to inhibit the biogenesis of microRNA let-7, which is released from injured cells during central nervous system (CNS) damage and induces neuronal death. Here, we uncover another novel mechanism of sPIF-mediated neuroprotection. Using a clinically relevant rat newborn brain injury model, we demonstrate that sPIF, when subcutaneously administrated, is able to reduce cell death, reverse neuronal loss and restore proper cortical architecture. We show, both
in vivo
and
in vitro
, that sPIF activates cyclic AMP dependent protein kinase (PKA) and calcium-dependent protein kinase (PKC) signaling, leading to increased phosphorylation of major neuroprotective substrates GAP-43, BAD and CREB. Phosphorylated CREB in turn facilitates expression of
Gap43, Bdnf
and
Bcl2
known to have important roles in regulating neuronal growth, survival and remodeling. As is the case in sPIF-mediated let-7 repression, we provide evidence that sPIF-mediated PKA/PKC activation is dependent on TLR4 expression. Thus, we propose that sPIF imparts neuroprotection via multiple mechanisms at multiple levels downstream of TLR4. Given the recent FDA fast-track approval of sPIF for clinical trials, its potential clinical application for treating other CNS diseases can be envisioned.</description><subject>13/1</subject><subject>13/106</subject><subject>13/2</subject><subject>13/51</subject><subject>13/95</subject><subject>38/22</subject><subject>38/77</subject><subject>38/89</subject><subject>631/378</subject><subject>82/80</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>bcl-Associated Death Protein - genetics</subject><subject>bcl-Associated Death Protein - metabolism</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Brain Injuries - metabolism</subject><subject>Brain Injuries - pathology</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - drug effects</subject><subject>Cyclic AMP - metabolism</subject><subject>Cyclic AMP Response Element-Binding Protein - genetics</subject><subject>Cyclic AMP Response Element-Binding Protein - metabolism</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Disease Models, Animal</subject><subject>GAP-43 Protein - genetics</subject><subject>GAP-43 Protein - metabolism</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Neuroprotective Agents - chemical synthesis</subject><subject>Neuroprotective Agents - pharmacology</subject><subject>Original Paper</subject><subject>Peptides - chemical synthesis</subject><subject>Peptides - pharmacology</subject><subject>Protein Kinase C - metabolism</subject><subject>Proto-Oncogene Proteins c-bcl-2 - genetics</subject><subject>Proto-Oncogene Proteins c-bcl-2 - metabolism</subject><subject>Rats</subject><subject>RNA Interference</subject><subject>Signal Transduction - drug effects</subject><subject>Stem Cells</subject><subject>Toll-Like Receptor 4 - antagonists & inhibitors</subject><subject>Toll-Like Receptor 4 - genetics</subject><subject>Toll-Like Receptor 4 - metabolism</subject><issn>1350-9047</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkU1LHTEYhUOp1K-uui-Bbgrt3CaT701BLtWKQl3oOmSSzG1kJrlNZgT_vbleFZUuXL3hPQ8nyTkAfMJogRGRP6xzixZhtmDsHdjDVPCGUUTe1zNhqFGIil2wX8o1QogLxT-A3ZYpwQkieyBeZH86rgcTJzOFFOGxsVPKsEtDmXwuMPo5p3VOk7f3-k0wcExuHioeV_Bio4QIz0I0xcMjaKJ7vVzCElbRDJU_BDu9GYr_-DAPwNXxr8vl7-b8z8np8ui8sYyqqZFOOkd75DpHu77vvWAtZV1HlMDESsS5VcxbrCSmkhjGO9QSiYXvmZfMEnIAfm5913M3emd9nLIZ9DqH0eRbnUzQL5UY_upVutFUYo4xrgZfHwxy-jf7MukxFOuHGpRPc9FYEkEwUeoNqCAtQaLFtKJfXqHXac41mnsKC86Z2lDftpTNqZTs-6d3Y6Q3letaud5Urhmr9OfnX31iHzuuwPctUKoUVz4_u_Q_fnepkLcq</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Mueller, M</creator><creator>Schoeberlein, A</creator><creator>Zhou, J</creator><creator>Joerger-Messerli, M</creator><creator>Oppliger, B</creator><creator>Reinhart, U</creator><creator>Bordey, A</creator><creator>Surbek, D</creator><creator>Barnea, E R</creator><creator>Huang, Y</creator><creator>Paidas, M</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6716-9551</orcidid><orcidid>https://orcid.org/0000-0002-0727-4034</orcidid></search><sort><creationdate>20151201</creationdate><title>PreImplantation Factor bolsters neuroprotection via modulating Protein Kinase A and Protein Kinase C signaling</title><author>Mueller, M ; Schoeberlein, A ; Zhou, J ; Joerger-Messerli, M ; Oppliger, B ; Reinhart, U ; Bordey, A ; Surbek, D ; Barnea, E R ; Huang, Y ; Paidas, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-8d8dd4f0dbd4bfffe75245bb39713c8066c95ec1981483a56b023817ef5e85c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13/1</topic><topic>13/106</topic><topic>13/2</topic><topic>13/51</topic><topic>13/95</topic><topic>38/22</topic><topic>38/77</topic><topic>38/89</topic><topic>631/378</topic><topic>82/80</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>bcl-Associated Death Protein - genetics</topic><topic>bcl-Associated Death Protein - metabolism</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Brain Injuries - metabolism</topic><topic>Brain Injuries - pathology</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - drug effects</topic><topic>Cyclic AMP - metabolism</topic><topic>Cyclic AMP Response Element-Binding Protein - genetics</topic><topic>Cyclic AMP Response Element-Binding Protein - metabolism</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Disease Models, Animal</topic><topic>GAP-43 Protein - genetics</topic><topic>GAP-43 Protein - metabolism</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Neuroprotective Agents - chemical synthesis</topic><topic>Neuroprotective Agents - pharmacology</topic><topic>Original Paper</topic><topic>Peptides - chemical synthesis</topic><topic>Peptides - pharmacology</topic><topic>Protein Kinase C - metabolism</topic><topic>Proto-Oncogene Proteins c-bcl-2 - genetics</topic><topic>Proto-Oncogene Proteins c-bcl-2 - metabolism</topic><topic>Rats</topic><topic>RNA Interference</topic><topic>Signal Transduction - drug effects</topic><topic>Stem Cells</topic><topic>Toll-Like Receptor 4 - antagonists & inhibitors</topic><topic>Toll-Like Receptor 4 - genetics</topic><topic>Toll-Like Receptor 4 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mueller, M</creatorcontrib><creatorcontrib>Schoeberlein, A</creatorcontrib><creatorcontrib>Zhou, J</creatorcontrib><creatorcontrib>Joerger-Messerli, M</creatorcontrib><creatorcontrib>Oppliger, B</creatorcontrib><creatorcontrib>Reinhart, U</creatorcontrib><creatorcontrib>Bordey, A</creatorcontrib><creatorcontrib>Surbek, D</creatorcontrib><creatorcontrib>Barnea, E R</creatorcontrib><creatorcontrib>Huang, Y</creatorcontrib><creatorcontrib>Paidas, M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mueller, M</au><au>Schoeberlein, A</au><au>Zhou, J</au><au>Joerger-Messerli, M</au><au>Oppliger, B</au><au>Reinhart, U</au><au>Bordey, A</au><au>Surbek, D</au><au>Barnea, E R</au><au>Huang, Y</au><au>Paidas, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PreImplantation Factor bolsters neuroprotection via modulating Protein Kinase A and Protein Kinase C signaling</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>22</volume><issue>12</issue><spage>2078</spage><epage>2086</epage><pages>2078-2086</pages><issn>1350-9047</issn><eissn>1476-5403</eissn><abstract>A synthetic peptide (sPIF) analogous to the mammalian embryo-derived PreImplantation Factor (PIF) enables neuroprotection in rodent models of experimental autoimmune encephalomyelitis and perinatal brain injury. The protective effects have been attributed, in part, to sPIF’s ability to inhibit the biogenesis of microRNA let-7, which is released from injured cells during central nervous system (CNS) damage and induces neuronal death. Here, we uncover another novel mechanism of sPIF-mediated neuroprotection. Using a clinically relevant rat newborn brain injury model, we demonstrate that sPIF, when subcutaneously administrated, is able to reduce cell death, reverse neuronal loss and restore proper cortical architecture. We show, both
in vivo
and
in vitro
, that sPIF activates cyclic AMP dependent protein kinase (PKA) and calcium-dependent protein kinase (PKC) signaling, leading to increased phosphorylation of major neuroprotective substrates GAP-43, BAD and CREB. Phosphorylated CREB in turn facilitates expression of
Gap43, Bdnf
and
Bcl2
known to have important roles in regulating neuronal growth, survival and remodeling. As is the case in sPIF-mediated let-7 repression, we provide evidence that sPIF-mediated PKA/PKC activation is dependent on TLR4 expression. Thus, we propose that sPIF imparts neuroprotection via multiple mechanisms at multiple levels downstream of TLR4. Given the recent FDA fast-track approval of sPIF for clinical trials, its potential clinical application for treating other CNS diseases can be envisioned.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25976303</pmid><doi>10.1038/cdd.2015.55</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6716-9551</orcidid><orcidid>https://orcid.org/0000-0002-0727-4034</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-9047 |
ispartof | Cell death and differentiation, 2015-12, Vol.22 (12), p.2078-2086 |
issn | 1350-9047 1476-5403 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4816111 |
source | MEDLINE; SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | 13/1 13/106 13/2 13/51 13/95 38/22 38/77 38/89 631/378 82/80 Animals Apoptosis bcl-Associated Death Protein - genetics bcl-Associated Death Protein - metabolism Biochemistry Biomedical and Life Sciences Brain Injuries - metabolism Brain Injuries - pathology Cell Biology Cell Cycle Analysis Cell Line, Tumor Cell Survival - drug effects Cyclic AMP - metabolism Cyclic AMP Response Element-Binding Protein - genetics Cyclic AMP Response Element-Binding Protein - metabolism Cyclic AMP-Dependent Protein Kinases - metabolism Disease Models, Animal GAP-43 Protein - genetics GAP-43 Protein - metabolism Life Sciences Mice MicroRNAs - genetics MicroRNAs - metabolism Neuroprotective Agents - chemical synthesis Neuroprotective Agents - pharmacology Original Paper Peptides - chemical synthesis Peptides - pharmacology Protein Kinase C - metabolism Proto-Oncogene Proteins c-bcl-2 - genetics Proto-Oncogene Proteins c-bcl-2 - metabolism Rats RNA Interference Signal Transduction - drug effects Stem Cells Toll-Like Receptor 4 - antagonists & inhibitors Toll-Like Receptor 4 - genetics Toll-Like Receptor 4 - metabolism |
title | PreImplantation Factor bolsters neuroprotection via modulating Protein Kinase A and Protein Kinase C signaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A27%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PreImplantation%20Factor%20bolsters%20neuroprotection%20via%20modulating%20Protein%20Kinase%20A%20and%20Protein%20Kinase%20C%20signaling&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Mueller,%20M&rft.date=2015-12-01&rft.volume=22&rft.issue=12&rft.spage=2078&rft.epage=2086&rft.pages=2078-2086&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/cdd.2015.55&rft_dat=%3Cproquest_pubme%3E1837313991%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1731766594&rft_id=info:pmid/25976303&rfr_iscdi=true |