PreImplantation Factor bolsters neuroprotection via modulating Protein Kinase A and Protein Kinase C signaling

A synthetic peptide (sPIF) analogous to the mammalian embryo-derived PreImplantation Factor (PIF) enables neuroprotection in rodent models of experimental autoimmune encephalomyelitis and perinatal brain injury. The protective effects have been attributed, in part, to sPIF’s ability to inhibit the b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death and differentiation 2015-12, Vol.22 (12), p.2078-2086
Hauptverfasser: Mueller, M, Schoeberlein, A, Zhou, J, Joerger-Messerli, M, Oppliger, B, Reinhart, U, Bordey, A, Surbek, D, Barnea, E R, Huang, Y, Paidas, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2086
container_issue 12
container_start_page 2078
container_title Cell death and differentiation
container_volume 22
creator Mueller, M
Schoeberlein, A
Zhou, J
Joerger-Messerli, M
Oppliger, B
Reinhart, U
Bordey, A
Surbek, D
Barnea, E R
Huang, Y
Paidas, M
description A synthetic peptide (sPIF) analogous to the mammalian embryo-derived PreImplantation Factor (PIF) enables neuroprotection in rodent models of experimental autoimmune encephalomyelitis and perinatal brain injury. The protective effects have been attributed, in part, to sPIF’s ability to inhibit the biogenesis of microRNA let-7, which is released from injured cells during central nervous system (CNS) damage and induces neuronal death. Here, we uncover another novel mechanism of sPIF-mediated neuroprotection. Using a clinically relevant rat newborn brain injury model, we demonstrate that sPIF, when subcutaneously administrated, is able to reduce cell death, reverse neuronal loss and restore proper cortical architecture. We show, both in vivo and in vitro , that sPIF activates cyclic AMP dependent protein kinase (PKA) and calcium-dependent protein kinase (PKC) signaling, leading to increased phosphorylation of major neuroprotective substrates GAP-43, BAD and CREB. Phosphorylated CREB in turn facilitates expression of Gap43, Bdnf and Bcl2 known to have important roles in regulating neuronal growth, survival and remodeling. As is the case in sPIF-mediated let-7 repression, we provide evidence that sPIF-mediated PKA/PKC activation is dependent on TLR4 expression. Thus, we propose that sPIF imparts neuroprotection via multiple mechanisms at multiple levels downstream of TLR4. Given the recent FDA fast-track approval of sPIF for clinical trials, its potential clinical application for treating other CNS diseases can be envisioned.
doi_str_mv 10.1038/cdd.2015.55
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4816111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1837313991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-8d8dd4f0dbd4bfffe75245bb39713c8066c95ec1981483a56b023817ef5e85c33</originalsourceid><addsrcrecordid>eNqNkU1LHTEYhUOp1K-uui-Bbgrt3CaT701BLtWKQl3oOmSSzG1kJrlNZgT_vbleFZUuXL3hPQ8nyTkAfMJogRGRP6xzixZhtmDsHdjDVPCGUUTe1zNhqFGIil2wX8o1QogLxT-A3ZYpwQkieyBeZH86rgcTJzOFFOGxsVPKsEtDmXwuMPo5p3VOk7f3-k0wcExuHioeV_Bio4QIz0I0xcMjaKJ7vVzCElbRDJU_BDu9GYr_-DAPwNXxr8vl7-b8z8np8ui8sYyqqZFOOkd75DpHu77vvWAtZV1HlMDESsS5VcxbrCSmkhjGO9QSiYXvmZfMEnIAfm5913M3emd9nLIZ9DqH0eRbnUzQL5UY_upVutFUYo4xrgZfHwxy-jf7MukxFOuHGpRPc9FYEkEwUeoNqCAtQaLFtKJfXqHXac41mnsKC86Z2lDftpTNqZTs-6d3Y6Q3letaud5Urhmr9OfnX31iHzuuwPctUKoUVz4_u_Q_fnepkLcq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1731766594</pqid></control><display><type>article</type><title>PreImplantation Factor bolsters neuroprotection via modulating Protein Kinase A and Protein Kinase C signaling</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Mueller, M ; Schoeberlein, A ; Zhou, J ; Joerger-Messerli, M ; Oppliger, B ; Reinhart, U ; Bordey, A ; Surbek, D ; Barnea, E R ; Huang, Y ; Paidas, M</creator><creatorcontrib>Mueller, M ; Schoeberlein, A ; Zhou, J ; Joerger-Messerli, M ; Oppliger, B ; Reinhart, U ; Bordey, A ; Surbek, D ; Barnea, E R ; Huang, Y ; Paidas, M</creatorcontrib><description>A synthetic peptide (sPIF) analogous to the mammalian embryo-derived PreImplantation Factor (PIF) enables neuroprotection in rodent models of experimental autoimmune encephalomyelitis and perinatal brain injury. The protective effects have been attributed, in part, to sPIF’s ability to inhibit the biogenesis of microRNA let-7, which is released from injured cells during central nervous system (CNS) damage and induces neuronal death. Here, we uncover another novel mechanism of sPIF-mediated neuroprotection. Using a clinically relevant rat newborn brain injury model, we demonstrate that sPIF, when subcutaneously administrated, is able to reduce cell death, reverse neuronal loss and restore proper cortical architecture. We show, both in vivo and in vitro , that sPIF activates cyclic AMP dependent protein kinase (PKA) and calcium-dependent protein kinase (PKC) signaling, leading to increased phosphorylation of major neuroprotective substrates GAP-43, BAD and CREB. Phosphorylated CREB in turn facilitates expression of Gap43, Bdnf and Bcl2 known to have important roles in regulating neuronal growth, survival and remodeling. As is the case in sPIF-mediated let-7 repression, we provide evidence that sPIF-mediated PKA/PKC activation is dependent on TLR4 expression. Thus, we propose that sPIF imparts neuroprotection via multiple mechanisms at multiple levels downstream of TLR4. Given the recent FDA fast-track approval of sPIF for clinical trials, its potential clinical application for treating other CNS diseases can be envisioned.</description><identifier>ISSN: 1350-9047</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/cdd.2015.55</identifier><identifier>PMID: 25976303</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/106 ; 13/2 ; 13/51 ; 13/95 ; 38/22 ; 38/77 ; 38/89 ; 631/378 ; 82/80 ; Animals ; Apoptosis ; bcl-Associated Death Protein - genetics ; bcl-Associated Death Protein - metabolism ; Biochemistry ; Biomedical and Life Sciences ; Brain Injuries - metabolism ; Brain Injuries - pathology ; Cell Biology ; Cell Cycle Analysis ; Cell Line, Tumor ; Cell Survival - drug effects ; Cyclic AMP - metabolism ; Cyclic AMP Response Element-Binding Protein - genetics ; Cyclic AMP Response Element-Binding Protein - metabolism ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Disease Models, Animal ; GAP-43 Protein - genetics ; GAP-43 Protein - metabolism ; Life Sciences ; Mice ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Neuroprotective Agents - chemical synthesis ; Neuroprotective Agents - pharmacology ; Original Paper ; Peptides - chemical synthesis ; Peptides - pharmacology ; Protein Kinase C - metabolism ; Proto-Oncogene Proteins c-bcl-2 - genetics ; Proto-Oncogene Proteins c-bcl-2 - metabolism ; Rats ; RNA Interference ; Signal Transduction - drug effects ; Stem Cells ; Toll-Like Receptor 4 - antagonists &amp; inhibitors ; Toll-Like Receptor 4 - genetics ; Toll-Like Receptor 4 - metabolism</subject><ispartof>Cell death and differentiation, 2015-12, Vol.22 (12), p.2078-2086</ispartof><rights>Macmillan Publishers Limited 2015</rights><rights>Copyright Nature Publishing Group Dec 2015</rights><rights>Copyright © 2015 Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-8d8dd4f0dbd4bfffe75245bb39713c8066c95ec1981483a56b023817ef5e85c33</citedby><cites>FETCH-LOGICAL-c549t-8d8dd4f0dbd4bfffe75245bb39713c8066c95ec1981483a56b023817ef5e85c33</cites><orcidid>0000-0002-6716-9551 ; 0000-0002-0727-4034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4816111/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4816111/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25976303$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mueller, M</creatorcontrib><creatorcontrib>Schoeberlein, A</creatorcontrib><creatorcontrib>Zhou, J</creatorcontrib><creatorcontrib>Joerger-Messerli, M</creatorcontrib><creatorcontrib>Oppliger, B</creatorcontrib><creatorcontrib>Reinhart, U</creatorcontrib><creatorcontrib>Bordey, A</creatorcontrib><creatorcontrib>Surbek, D</creatorcontrib><creatorcontrib>Barnea, E R</creatorcontrib><creatorcontrib>Huang, Y</creatorcontrib><creatorcontrib>Paidas, M</creatorcontrib><title>PreImplantation Factor bolsters neuroprotection via modulating Protein Kinase A and Protein Kinase C signaling</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>A synthetic peptide (sPIF) analogous to the mammalian embryo-derived PreImplantation Factor (PIF) enables neuroprotection in rodent models of experimental autoimmune encephalomyelitis and perinatal brain injury. The protective effects have been attributed, in part, to sPIF’s ability to inhibit the biogenesis of microRNA let-7, which is released from injured cells during central nervous system (CNS) damage and induces neuronal death. Here, we uncover another novel mechanism of sPIF-mediated neuroprotection. Using a clinically relevant rat newborn brain injury model, we demonstrate that sPIF, when subcutaneously administrated, is able to reduce cell death, reverse neuronal loss and restore proper cortical architecture. We show, both in vivo and in vitro , that sPIF activates cyclic AMP dependent protein kinase (PKA) and calcium-dependent protein kinase (PKC) signaling, leading to increased phosphorylation of major neuroprotective substrates GAP-43, BAD and CREB. Phosphorylated CREB in turn facilitates expression of Gap43, Bdnf and Bcl2 known to have important roles in regulating neuronal growth, survival and remodeling. As is the case in sPIF-mediated let-7 repression, we provide evidence that sPIF-mediated PKA/PKC activation is dependent on TLR4 expression. Thus, we propose that sPIF imparts neuroprotection via multiple mechanisms at multiple levels downstream of TLR4. Given the recent FDA fast-track approval of sPIF for clinical trials, its potential clinical application for treating other CNS diseases can be envisioned.</description><subject>13/1</subject><subject>13/106</subject><subject>13/2</subject><subject>13/51</subject><subject>13/95</subject><subject>38/22</subject><subject>38/77</subject><subject>38/89</subject><subject>631/378</subject><subject>82/80</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>bcl-Associated Death Protein - genetics</subject><subject>bcl-Associated Death Protein - metabolism</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Brain Injuries - metabolism</subject><subject>Brain Injuries - pathology</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - drug effects</subject><subject>Cyclic AMP - metabolism</subject><subject>Cyclic AMP Response Element-Binding Protein - genetics</subject><subject>Cyclic AMP Response Element-Binding Protein - metabolism</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Disease Models, Animal</subject><subject>GAP-43 Protein - genetics</subject><subject>GAP-43 Protein - metabolism</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Neuroprotective Agents - chemical synthesis</subject><subject>Neuroprotective Agents - pharmacology</subject><subject>Original Paper</subject><subject>Peptides - chemical synthesis</subject><subject>Peptides - pharmacology</subject><subject>Protein Kinase C - metabolism</subject><subject>Proto-Oncogene Proteins c-bcl-2 - genetics</subject><subject>Proto-Oncogene Proteins c-bcl-2 - metabolism</subject><subject>Rats</subject><subject>RNA Interference</subject><subject>Signal Transduction - drug effects</subject><subject>Stem Cells</subject><subject>Toll-Like Receptor 4 - antagonists &amp; inhibitors</subject><subject>Toll-Like Receptor 4 - genetics</subject><subject>Toll-Like Receptor 4 - metabolism</subject><issn>1350-9047</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkU1LHTEYhUOp1K-uui-Bbgrt3CaT701BLtWKQl3oOmSSzG1kJrlNZgT_vbleFZUuXL3hPQ8nyTkAfMJogRGRP6xzixZhtmDsHdjDVPCGUUTe1zNhqFGIil2wX8o1QogLxT-A3ZYpwQkieyBeZH86rgcTJzOFFOGxsVPKsEtDmXwuMPo5p3VOk7f3-k0wcExuHioeV_Bio4QIz0I0xcMjaKJ7vVzCElbRDJU_BDu9GYr_-DAPwNXxr8vl7-b8z8np8ui8sYyqqZFOOkd75DpHu77vvWAtZV1HlMDESsS5VcxbrCSmkhjGO9QSiYXvmZfMEnIAfm5913M3emd9nLIZ9DqH0eRbnUzQL5UY_upVutFUYo4xrgZfHwxy-jf7MukxFOuHGpRPc9FYEkEwUeoNqCAtQaLFtKJfXqHXac41mnsKC86Z2lDftpTNqZTs-6d3Y6Q3letaud5Urhmr9OfnX31iHzuuwPctUKoUVz4_u_Q_fnepkLcq</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Mueller, M</creator><creator>Schoeberlein, A</creator><creator>Zhou, J</creator><creator>Joerger-Messerli, M</creator><creator>Oppliger, B</creator><creator>Reinhart, U</creator><creator>Bordey, A</creator><creator>Surbek, D</creator><creator>Barnea, E R</creator><creator>Huang, Y</creator><creator>Paidas, M</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6716-9551</orcidid><orcidid>https://orcid.org/0000-0002-0727-4034</orcidid></search><sort><creationdate>20151201</creationdate><title>PreImplantation Factor bolsters neuroprotection via modulating Protein Kinase A and Protein Kinase C signaling</title><author>Mueller, M ; Schoeberlein, A ; Zhou, J ; Joerger-Messerli, M ; Oppliger, B ; Reinhart, U ; Bordey, A ; Surbek, D ; Barnea, E R ; Huang, Y ; Paidas, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-8d8dd4f0dbd4bfffe75245bb39713c8066c95ec1981483a56b023817ef5e85c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13/1</topic><topic>13/106</topic><topic>13/2</topic><topic>13/51</topic><topic>13/95</topic><topic>38/22</topic><topic>38/77</topic><topic>38/89</topic><topic>631/378</topic><topic>82/80</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>bcl-Associated Death Protein - genetics</topic><topic>bcl-Associated Death Protein - metabolism</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Brain Injuries - metabolism</topic><topic>Brain Injuries - pathology</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - drug effects</topic><topic>Cyclic AMP - metabolism</topic><topic>Cyclic AMP Response Element-Binding Protein - genetics</topic><topic>Cyclic AMP Response Element-Binding Protein - metabolism</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Disease Models, Animal</topic><topic>GAP-43 Protein - genetics</topic><topic>GAP-43 Protein - metabolism</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Neuroprotective Agents - chemical synthesis</topic><topic>Neuroprotective Agents - pharmacology</topic><topic>Original Paper</topic><topic>Peptides - chemical synthesis</topic><topic>Peptides - pharmacology</topic><topic>Protein Kinase C - metabolism</topic><topic>Proto-Oncogene Proteins c-bcl-2 - genetics</topic><topic>Proto-Oncogene Proteins c-bcl-2 - metabolism</topic><topic>Rats</topic><topic>RNA Interference</topic><topic>Signal Transduction - drug effects</topic><topic>Stem Cells</topic><topic>Toll-Like Receptor 4 - antagonists &amp; inhibitors</topic><topic>Toll-Like Receptor 4 - genetics</topic><topic>Toll-Like Receptor 4 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mueller, M</creatorcontrib><creatorcontrib>Schoeberlein, A</creatorcontrib><creatorcontrib>Zhou, J</creatorcontrib><creatorcontrib>Joerger-Messerli, M</creatorcontrib><creatorcontrib>Oppliger, B</creatorcontrib><creatorcontrib>Reinhart, U</creatorcontrib><creatorcontrib>Bordey, A</creatorcontrib><creatorcontrib>Surbek, D</creatorcontrib><creatorcontrib>Barnea, E R</creatorcontrib><creatorcontrib>Huang, Y</creatorcontrib><creatorcontrib>Paidas, M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mueller, M</au><au>Schoeberlein, A</au><au>Zhou, J</au><au>Joerger-Messerli, M</au><au>Oppliger, B</au><au>Reinhart, U</au><au>Bordey, A</au><au>Surbek, D</au><au>Barnea, E R</au><au>Huang, Y</au><au>Paidas, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PreImplantation Factor bolsters neuroprotection via modulating Protein Kinase A and Protein Kinase C signaling</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>22</volume><issue>12</issue><spage>2078</spage><epage>2086</epage><pages>2078-2086</pages><issn>1350-9047</issn><eissn>1476-5403</eissn><abstract>A synthetic peptide (sPIF) analogous to the mammalian embryo-derived PreImplantation Factor (PIF) enables neuroprotection in rodent models of experimental autoimmune encephalomyelitis and perinatal brain injury. The protective effects have been attributed, in part, to sPIF’s ability to inhibit the biogenesis of microRNA let-7, which is released from injured cells during central nervous system (CNS) damage and induces neuronal death. Here, we uncover another novel mechanism of sPIF-mediated neuroprotection. Using a clinically relevant rat newborn brain injury model, we demonstrate that sPIF, when subcutaneously administrated, is able to reduce cell death, reverse neuronal loss and restore proper cortical architecture. We show, both in vivo and in vitro , that sPIF activates cyclic AMP dependent protein kinase (PKA) and calcium-dependent protein kinase (PKC) signaling, leading to increased phosphorylation of major neuroprotective substrates GAP-43, BAD and CREB. Phosphorylated CREB in turn facilitates expression of Gap43, Bdnf and Bcl2 known to have important roles in regulating neuronal growth, survival and remodeling. As is the case in sPIF-mediated let-7 repression, we provide evidence that sPIF-mediated PKA/PKC activation is dependent on TLR4 expression. Thus, we propose that sPIF imparts neuroprotection via multiple mechanisms at multiple levels downstream of TLR4. Given the recent FDA fast-track approval of sPIF for clinical trials, its potential clinical application for treating other CNS diseases can be envisioned.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25976303</pmid><doi>10.1038/cdd.2015.55</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6716-9551</orcidid><orcidid>https://orcid.org/0000-0002-0727-4034</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-9047
ispartof Cell death and differentiation, 2015-12, Vol.22 (12), p.2078-2086
issn 1350-9047
1476-5403
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4816111
source MEDLINE; SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects 13/1
13/106
13/2
13/51
13/95
38/22
38/77
38/89
631/378
82/80
Animals
Apoptosis
bcl-Associated Death Protein - genetics
bcl-Associated Death Protein - metabolism
Biochemistry
Biomedical and Life Sciences
Brain Injuries - metabolism
Brain Injuries - pathology
Cell Biology
Cell Cycle Analysis
Cell Line, Tumor
Cell Survival - drug effects
Cyclic AMP - metabolism
Cyclic AMP Response Element-Binding Protein - genetics
Cyclic AMP Response Element-Binding Protein - metabolism
Cyclic AMP-Dependent Protein Kinases - metabolism
Disease Models, Animal
GAP-43 Protein - genetics
GAP-43 Protein - metabolism
Life Sciences
Mice
MicroRNAs - genetics
MicroRNAs - metabolism
Neuroprotective Agents - chemical synthesis
Neuroprotective Agents - pharmacology
Original Paper
Peptides - chemical synthesis
Peptides - pharmacology
Protein Kinase C - metabolism
Proto-Oncogene Proteins c-bcl-2 - genetics
Proto-Oncogene Proteins c-bcl-2 - metabolism
Rats
RNA Interference
Signal Transduction - drug effects
Stem Cells
Toll-Like Receptor 4 - antagonists & inhibitors
Toll-Like Receptor 4 - genetics
Toll-Like Receptor 4 - metabolism
title PreImplantation Factor bolsters neuroprotection via modulating Protein Kinase A and Protein Kinase C signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A27%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PreImplantation%20Factor%20bolsters%20neuroprotection%20via%20modulating%20Protein%20Kinase%20A%20and%20Protein%20Kinase%20C%20signaling&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Mueller,%20M&rft.date=2015-12-01&rft.volume=22&rft.issue=12&rft.spage=2078&rft.epage=2086&rft.pages=2078-2086&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/cdd.2015.55&rft_dat=%3Cproquest_pubme%3E1837313991%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1731766594&rft_id=info:pmid/25976303&rfr_iscdi=true