RACOG and wRACOG: Two Probabilistic Oversampling Techniques
As machine learning techniques mature and are used to tackle complex scientific problems, challenges arise such as the imbalanced class distribution problem, where one of the target class labels is under-represented in comparison with other classes. Existing oversampling approaches for addressing th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2015-01, Vol.27 (1), p.222-234 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 234 |
---|---|
container_issue | 1 |
container_start_page | 222 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 27 |
creator | Das, Barnan Krishnan, Narayanan C. Cook, Diane J. |
description | As machine learning techniques mature and are used to tackle complex scientific problems, challenges arise such as the imbalanced class distribution problem, where one of the target class labels is under-represented in comparison with other classes. Existing oversampling approaches for addressing this problem typically do not consider the probability distribution of the minority class while synthetically generating new samples. As a result, the minority class is not represented well which leads to high misclassification error. We introduce two probabilistic oversampling approaches, namely RACOG and wRACOG, to synthetically generating and strategically selecting new minority class samples. The proposed approaches use the joint probability distribution of data attributes and Gibbs sampling to generate new minority class samples. While RACOG selects samples produced by the Gibbs sampler based on a predefined lag, wRACOG selects those samples that have the highest probability of being misclassified by the existing learning model. We validate our approach using nine UCI data sets that were carefully modified to exhibit class imbalance and one new application domain data set with inherent extreme class imbalance. In addition, we compare the classification performance of the proposed methods with three other existing resampling techniques. |
doi_str_mv | 10.1109/TKDE.2014.2324567 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4814938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6816044</ieee_id><sourcerecordid>1835675476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-1997407111a899ae1f5c4775c62376c7289079ce4751e3e0d43f8f835f8547553</originalsourceid><addsrcrecordid>eNpVkFtLAzEQhYMoVqs_QATZR1-2ZjbJJlEQSq1VLFRkfQ5pmm0je6mbXvDfm9pa9ClDzplzhg-hC8AdACxvspeHfifBQDsJSShL-QE6AcZEnICEwzBjCjEllLfQqfcfGGPBBRyjVsKDIjk9QXdv3d5oEOlqEq1_xtsoW9fRa1OP9dgVzi-ciUYr23hdzgtXTaPMmlnlPpfWn6GjXBfenu_eNnp_7Ge9p3g4Gjz3usPYUMEWMcjQhDkAaCGltpAzQzlnJk0ITw1PhMRcGks5A0ssnlCSi1wQlgsW_hhpo_tt7nw5Lu3E2GrR6ELNG1fq5kvV2qn_SuVmalqvFBVAJREh4HoX0NSbwxeqdN7YotCVrZdeQShLeShLgxW2VtPU3jc239cAVhvoagNdbaCrHfSwc_X3vv3GL-VguNwanLV2L6cCUkwp-QbLP4Pf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835675476</pqid></control><display><type>article</type><title>RACOG and wRACOG: Two Probabilistic Oversampling Techniques</title><source>IEEE Electronic Library (IEL)</source><creator>Das, Barnan ; Krishnan, Narayanan C. ; Cook, Diane J.</creator><creatorcontrib>Das, Barnan ; Krishnan, Narayanan C. ; Cook, Diane J.</creatorcontrib><description>As machine learning techniques mature and are used to tackle complex scientific problems, challenges arise such as the imbalanced class distribution problem, where one of the target class labels is under-represented in comparison with other classes. Existing oversampling approaches for addressing this problem typically do not consider the probability distribution of the minority class while synthetically generating new samples. As a result, the minority class is not represented well which leads to high misclassification error. We introduce two probabilistic oversampling approaches, namely RACOG and wRACOG, to synthetically generating and strategically selecting new minority class samples. The proposed approaches use the joint probability distribution of data attributes and Gibbs sampling to generate new minority class samples. While RACOG selects samples produced by the Gibbs sampler based on a predefined lag, wRACOG selects those samples that have the highest probability of being misclassified by the existing learning model. We validate our approach using nine UCI data sets that were carefully modified to exhibit class imbalance and one new application domain data set with inherent extreme class imbalance. In addition, we compare the classification performance of the proposed methods with three other existing resampling techniques.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2014.2324567</identifier><identifier>PMID: 27041974</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Approximation algorithms ; Approximation methods ; Joints ; Kernel ; Machine learning algorithms ; Probabilistic logic ; Probability distribution</subject><ispartof>IEEE transactions on knowledge and data engineering, 2015-01, Vol.27 (1), p.222-234</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-1997407111a899ae1f5c4775c62376c7289079ce4751e3e0d43f8f835f8547553</citedby><cites>FETCH-LOGICAL-c485t-1997407111a899ae1f5c4775c62376c7289079ce4751e3e0d43f8f835f8547553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6816044$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6816044$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27041974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Das, Barnan</creatorcontrib><creatorcontrib>Krishnan, Narayanan C.</creatorcontrib><creatorcontrib>Cook, Diane J.</creatorcontrib><title>RACOG and wRACOG: Two Probabilistic Oversampling Techniques</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><addtitle>IEEE Trans Knowl Data Eng</addtitle><description>As machine learning techniques mature and are used to tackle complex scientific problems, challenges arise such as the imbalanced class distribution problem, where one of the target class labels is under-represented in comparison with other classes. Existing oversampling approaches for addressing this problem typically do not consider the probability distribution of the minority class while synthetically generating new samples. As a result, the minority class is not represented well which leads to high misclassification error. We introduce two probabilistic oversampling approaches, namely RACOG and wRACOG, to synthetically generating and strategically selecting new minority class samples. The proposed approaches use the joint probability distribution of data attributes and Gibbs sampling to generate new minority class samples. While RACOG selects samples produced by the Gibbs sampler based on a predefined lag, wRACOG selects those samples that have the highest probability of being misclassified by the existing learning model. We validate our approach using nine UCI data sets that were carefully modified to exhibit class imbalance and one new application domain data set with inherent extreme class imbalance. In addition, we compare the classification performance of the proposed methods with three other existing resampling techniques.</description><subject>Approximation algorithms</subject><subject>Approximation methods</subject><subject>Joints</subject><subject>Kernel</subject><subject>Machine learning algorithms</subject><subject>Probabilistic logic</subject><subject>Probability distribution</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpVkFtLAzEQhYMoVqs_QATZR1-2ZjbJJlEQSq1VLFRkfQ5pmm0je6mbXvDfm9pa9ClDzplzhg-hC8AdACxvspeHfifBQDsJSShL-QE6AcZEnICEwzBjCjEllLfQqfcfGGPBBRyjVsKDIjk9QXdv3d5oEOlqEq1_xtsoW9fRa1OP9dgVzi-ciUYr23hdzgtXTaPMmlnlPpfWn6GjXBfenu_eNnp_7Ge9p3g4Gjz3usPYUMEWMcjQhDkAaCGltpAzQzlnJk0ITw1PhMRcGks5A0ssnlCSi1wQlgsW_hhpo_tt7nw5Lu3E2GrR6ELNG1fq5kvV2qn_SuVmalqvFBVAJREh4HoX0NSbwxeqdN7YotCVrZdeQShLeShLgxW2VtPU3jc239cAVhvoagNdbaCrHfSwc_X3vv3GL-VguNwanLV2L6cCUkwp-QbLP4Pf</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Das, Barnan</creator><creator>Krishnan, Narayanan C.</creator><creator>Cook, Diane J.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150101</creationdate><title>RACOG and wRACOG: Two Probabilistic Oversampling Techniques</title><author>Das, Barnan ; Krishnan, Narayanan C. ; Cook, Diane J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-1997407111a899ae1f5c4775c62376c7289079ce4751e3e0d43f8f835f8547553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation algorithms</topic><topic>Approximation methods</topic><topic>Joints</topic><topic>Kernel</topic><topic>Machine learning algorithms</topic><topic>Probabilistic logic</topic><topic>Probability distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Barnan</creatorcontrib><creatorcontrib>Krishnan, Narayanan C.</creatorcontrib><creatorcontrib>Cook, Diane J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Das, Barnan</au><au>Krishnan, Narayanan C.</au><au>Cook, Diane J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RACOG and wRACOG: Two Probabilistic Oversampling Techniques</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><addtitle>IEEE Trans Knowl Data Eng</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>27</volume><issue>1</issue><spage>222</spage><epage>234</epage><pages>222-234</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>As machine learning techniques mature and are used to tackle complex scientific problems, challenges arise such as the imbalanced class distribution problem, where one of the target class labels is under-represented in comparison with other classes. Existing oversampling approaches for addressing this problem typically do not consider the probability distribution of the minority class while synthetically generating new samples. As a result, the minority class is not represented well which leads to high misclassification error. We introduce two probabilistic oversampling approaches, namely RACOG and wRACOG, to synthetically generating and strategically selecting new minority class samples. The proposed approaches use the joint probability distribution of data attributes and Gibbs sampling to generate new minority class samples. While RACOG selects samples produced by the Gibbs sampler based on a predefined lag, wRACOG selects those samples that have the highest probability of being misclassified by the existing learning model. We validate our approach using nine UCI data sets that were carefully modified to exhibit class imbalance and one new application domain data set with inherent extreme class imbalance. In addition, we compare the classification performance of the proposed methods with three other existing resampling techniques.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27041974</pmid><doi>10.1109/TKDE.2014.2324567</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2015-01, Vol.27 (1), p.222-234 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4814938 |
source | IEEE Electronic Library (IEL) |
subjects | Approximation algorithms Approximation methods Joints Kernel Machine learning algorithms Probabilistic logic Probability distribution |
title | RACOG and wRACOG: Two Probabilistic Oversampling Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A47%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RACOG%20and%20wRACOG:%20Two%20Probabilistic%20Oversampling%20Techniques&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Das,%20Barnan&rft.date=2015-01-01&rft.volume=27&rft.issue=1&rft.spage=222&rft.epage=234&rft.pages=222-234&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2014.2324567&rft_dat=%3Cproquest_RIE%3E1835675476%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835675476&rft_id=info:pmid/27041974&rft_ieee_id=6816044&rfr_iscdi=true |