Quantitative non-invasive cell characterisation and discrimination based on multispectral autofluorescence features

Automated and unbiased methods of non-invasive cell monitoring able to deal with complex biological heterogeneity are fundamentally important for biology and medicine. Label-free cell imaging provides information about endogenous autofluorescent metabolites, enzymes and cofactors in cells. However e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-03, Vol.6 (1), p.23453-23453, Article 23453
Hauptverfasser: Gosnell, Martin E., Anwer, Ayad G., Mahbub, Saabah B., Menon Perinchery, Sandeep, Inglis, David W., Adhikary, Partho P., Jazayeri, Jalal A., Cahill, Michael A., Saad, Sonia, Pollock, Carol A., Sutton-McDowall, Melanie L., Thompson, Jeremy G., Goldys, Ewa M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23453
container_issue 1
container_start_page 23453
container_title Scientific reports
container_volume 6
creator Gosnell, Martin E.
Anwer, Ayad G.
Mahbub, Saabah B.
Menon Perinchery, Sandeep
Inglis, David W.
Adhikary, Partho P.
Jazayeri, Jalal A.
Cahill, Michael A.
Saad, Sonia
Pollock, Carol A.
Sutton-McDowall, Melanie L.
Thompson, Jeremy G.
Goldys, Ewa M.
description Automated and unbiased methods of non-invasive cell monitoring able to deal with complex biological heterogeneity are fundamentally important for biology and medicine. Label-free cell imaging provides information about endogenous autofluorescent metabolites, enzymes and cofactors in cells. However extracting high content information from autofluorescence imaging has been hitherto impossible. Here, we quantitatively characterise cell populations in different tissue types, live or fixed, by using novel image processing and a simple multispectral upgrade of a wide-field fluorescence microscope. Our optimal discrimination approach enables statistical hypothesis testing and intuitive visualisations where previously undetectable differences become clearly apparent. Label-free classifications are validated by the analysis of Classification Determinant (CD) antigen expression. The versatility of our method is illustrated by detecting genetic mutations in cancer, non-invasive monitoring of CD90 expression, label-free tracking of stem cell differentiation, identifying stem cell subpopulations with varying functional characteristics, tissue diagnostics in diabetes and assessing the condition of preimplantation embryos.
doi_str_mv 10.1038/srep23453
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4814840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898687339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-4d4c704a67468da1cd05f2144b8113ea168dcb25784e0d8d226908a4e4670f863</originalsourceid><addsrcrecordid>eNplkVtrFDEUx4NYbGn74BeQAV9UmJrbTDIvQineoFAEfQ5nkzNtymyy5rLgtzfL1mXVvORcfvzzPzmEvGT0ilGh3-eEGy7kIJ6RM07l0HPB-fOj-JRc5vxI2xn4JNn0gpxyRfmkJD8j-VuFUHyB4rfYhRh6H7aQd4nFZensAySwBZPPDYmhg-A657NNfu3DvrSCjK5rwbouxecN2pJg6aCWOC81JswWg8VuRii1ZRfkZIYl4-XTfU5-fPr4_eZLf3v3-evN9W1vpdCll05aRSWMSo7aAbOODjNnUq40YwKBtapd8UFpidRpx_k4UQ0S5ajorEdxTj7sdTd1tUbXTOx8mU2zDumXieDN353gH8x93BqpmdSSNoE3TwIp_qyYi1m3ydu3QMBYs2FKqUlrznRDX_-DPsaaQhvPMD3pUSshpka93VM2xdwWNx_MMGp22zSHbTb21bH7A_lndw14twdya4V7TEdP_qf2G6yFrBY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898687339</pqid></control><display><type>article</type><title>Quantitative non-invasive cell characterisation and discrimination based on multispectral autofluorescence features</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Gosnell, Martin E. ; Anwer, Ayad G. ; Mahbub, Saabah B. ; Menon Perinchery, Sandeep ; Inglis, David W. ; Adhikary, Partho P. ; Jazayeri, Jalal A. ; Cahill, Michael A. ; Saad, Sonia ; Pollock, Carol A. ; Sutton-McDowall, Melanie L. ; Thompson, Jeremy G. ; Goldys, Ewa M.</creator><creatorcontrib>Gosnell, Martin E. ; Anwer, Ayad G. ; Mahbub, Saabah B. ; Menon Perinchery, Sandeep ; Inglis, David W. ; Adhikary, Partho P. ; Jazayeri, Jalal A. ; Cahill, Michael A. ; Saad, Sonia ; Pollock, Carol A. ; Sutton-McDowall, Melanie L. ; Thompson, Jeremy G. ; Goldys, Ewa M.</creatorcontrib><description>Automated and unbiased methods of non-invasive cell monitoring able to deal with complex biological heterogeneity are fundamentally important for biology and medicine. Label-free cell imaging provides information about endogenous autofluorescent metabolites, enzymes and cofactors in cells. However extracting high content information from autofluorescence imaging has been hitherto impossible. Here, we quantitatively characterise cell populations in different tissue types, live or fixed, by using novel image processing and a simple multispectral upgrade of a wide-field fluorescence microscope. Our optimal discrimination approach enables statistical hypothesis testing and intuitive visualisations where previously undetectable differences become clearly apparent. Label-free classifications are validated by the analysis of Classification Determinant (CD) antigen expression. The versatility of our method is illustrated by detecting genetic mutations in cancer, non-invasive monitoring of CD90 expression, label-free tracking of stem cell differentiation, identifying stem cell subpopulations with varying functional characteristics, tissue diagnostics in diabetes and assessing the condition of preimplantation embryos.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep23453</identifier><identifier>PMID: 27029742</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57 ; 631/57/2267 ; Animals ; Blastocyst - metabolism ; Blastocyst - ultrastructure ; Cancer ; CD90 antigen ; Cell Differentiation ; Cell Line, Tumor ; Cell Tracking - instrumentation ; Cell Tracking - methods ; Cofactors ; Diabetes mellitus ; Diabetes Mellitus, Experimental - genetics ; Diabetes Mellitus, Experimental - metabolism ; Diabetes Mellitus, Experimental - pathology ; Embryos ; Enzymes ; Gene Expression ; Gene Expression Regulation ; Heterogeneity ; Humanities and Social Sciences ; Humans ; Image processing ; Image Processing, Computer-Assisted - statistics &amp; numerical data ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Metabolites ; Mice ; multidisciplinary ; Mutation ; Optical Imaging - methods ; Optical Imaging - statistics &amp; numerical data ; Pancreatic Neoplasms - genetics ; Pancreatic Neoplasms - metabolism ; Pancreatic Neoplasms - ultrastructure ; Receptors, Progesterone - genetics ; Receptors, Progesterone - metabolism ; Science ; Stem cells ; Stem Cells - cytology ; Stem Cells - metabolism ; Subpopulations ; Thy-1 Antigens - genetics ; Thy-1 Antigens - metabolism</subject><ispartof>Scientific reports, 2016-03, Vol.6 (1), p.23453-23453, Article 23453</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Mar 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-4d4c704a67468da1cd05f2144b8113ea168dcb25784e0d8d226908a4e4670f863</citedby><cites>FETCH-LOGICAL-c438t-4d4c704a67468da1cd05f2144b8113ea168dcb25784e0d8d226908a4e4670f863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814840/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814840/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27029742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gosnell, Martin E.</creatorcontrib><creatorcontrib>Anwer, Ayad G.</creatorcontrib><creatorcontrib>Mahbub, Saabah B.</creatorcontrib><creatorcontrib>Menon Perinchery, Sandeep</creatorcontrib><creatorcontrib>Inglis, David W.</creatorcontrib><creatorcontrib>Adhikary, Partho P.</creatorcontrib><creatorcontrib>Jazayeri, Jalal A.</creatorcontrib><creatorcontrib>Cahill, Michael A.</creatorcontrib><creatorcontrib>Saad, Sonia</creatorcontrib><creatorcontrib>Pollock, Carol A.</creatorcontrib><creatorcontrib>Sutton-McDowall, Melanie L.</creatorcontrib><creatorcontrib>Thompson, Jeremy G.</creatorcontrib><creatorcontrib>Goldys, Ewa M.</creatorcontrib><title>Quantitative non-invasive cell characterisation and discrimination based on multispectral autofluorescence features</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Automated and unbiased methods of non-invasive cell monitoring able to deal with complex biological heterogeneity are fundamentally important for biology and medicine. Label-free cell imaging provides information about endogenous autofluorescent metabolites, enzymes and cofactors in cells. However extracting high content information from autofluorescence imaging has been hitherto impossible. Here, we quantitatively characterise cell populations in different tissue types, live or fixed, by using novel image processing and a simple multispectral upgrade of a wide-field fluorescence microscope. Our optimal discrimination approach enables statistical hypothesis testing and intuitive visualisations where previously undetectable differences become clearly apparent. Label-free classifications are validated by the analysis of Classification Determinant (CD) antigen expression. The versatility of our method is illustrated by detecting genetic mutations in cancer, non-invasive monitoring of CD90 expression, label-free tracking of stem cell differentiation, identifying stem cell subpopulations with varying functional characteristics, tissue diagnostics in diabetes and assessing the condition of preimplantation embryos.</description><subject>631/57</subject><subject>631/57/2267</subject><subject>Animals</subject><subject>Blastocyst - metabolism</subject><subject>Blastocyst - ultrastructure</subject><subject>Cancer</subject><subject>CD90 antigen</subject><subject>Cell Differentiation</subject><subject>Cell Line, Tumor</subject><subject>Cell Tracking - instrumentation</subject><subject>Cell Tracking - methods</subject><subject>Cofactors</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Experimental - genetics</subject><subject>Diabetes Mellitus, Experimental - metabolism</subject><subject>Diabetes Mellitus, Experimental - pathology</subject><subject>Embryos</subject><subject>Enzymes</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation</subject><subject>Heterogeneity</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - statistics &amp; numerical data</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Metabolites</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Optical Imaging - methods</subject><subject>Optical Imaging - statistics &amp; numerical data</subject><subject>Pancreatic Neoplasms - genetics</subject><subject>Pancreatic Neoplasms - metabolism</subject><subject>Pancreatic Neoplasms - ultrastructure</subject><subject>Receptors, Progesterone - genetics</subject><subject>Receptors, Progesterone - metabolism</subject><subject>Science</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><subject>Subpopulations</subject><subject>Thy-1 Antigens - genetics</subject><subject>Thy-1 Antigens - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkVtrFDEUx4NYbGn74BeQAV9UmJrbTDIvQineoFAEfQ5nkzNtymyy5rLgtzfL1mXVvORcfvzzPzmEvGT0ilGh3-eEGy7kIJ6RM07l0HPB-fOj-JRc5vxI2xn4JNn0gpxyRfmkJD8j-VuFUHyB4rfYhRh6H7aQd4nFZensAySwBZPPDYmhg-A657NNfu3DvrSCjK5rwbouxecN2pJg6aCWOC81JswWg8VuRii1ZRfkZIYl4-XTfU5-fPr4_eZLf3v3-evN9W1vpdCll05aRSWMSo7aAbOODjNnUq40YwKBtapd8UFpidRpx_k4UQ0S5ajorEdxTj7sdTd1tUbXTOx8mU2zDumXieDN353gH8x93BqpmdSSNoE3TwIp_qyYi1m3ydu3QMBYs2FKqUlrznRDX_-DPsaaQhvPMD3pUSshpka93VM2xdwWNx_MMGp22zSHbTb21bH7A_lndw14twdya4V7TEdP_qf2G6yFrBY</recordid><startdate>20160331</startdate><enddate>20160331</enddate><creator>Gosnell, Martin E.</creator><creator>Anwer, Ayad G.</creator><creator>Mahbub, Saabah B.</creator><creator>Menon Perinchery, Sandeep</creator><creator>Inglis, David W.</creator><creator>Adhikary, Partho P.</creator><creator>Jazayeri, Jalal A.</creator><creator>Cahill, Michael A.</creator><creator>Saad, Sonia</creator><creator>Pollock, Carol A.</creator><creator>Sutton-McDowall, Melanie L.</creator><creator>Thompson, Jeremy G.</creator><creator>Goldys, Ewa M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160331</creationdate><title>Quantitative non-invasive cell characterisation and discrimination based on multispectral autofluorescence features</title><author>Gosnell, Martin E. ; Anwer, Ayad G. ; Mahbub, Saabah B. ; Menon Perinchery, Sandeep ; Inglis, David W. ; Adhikary, Partho P. ; Jazayeri, Jalal A. ; Cahill, Michael A. ; Saad, Sonia ; Pollock, Carol A. ; Sutton-McDowall, Melanie L. ; Thompson, Jeremy G. ; Goldys, Ewa M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-4d4c704a67468da1cd05f2144b8113ea168dcb25784e0d8d226908a4e4670f863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/57</topic><topic>631/57/2267</topic><topic>Animals</topic><topic>Blastocyst - metabolism</topic><topic>Blastocyst - ultrastructure</topic><topic>Cancer</topic><topic>CD90 antigen</topic><topic>Cell Differentiation</topic><topic>Cell Line, Tumor</topic><topic>Cell Tracking - instrumentation</topic><topic>Cell Tracking - methods</topic><topic>Cofactors</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Experimental - genetics</topic><topic>Diabetes Mellitus, Experimental - metabolism</topic><topic>Diabetes Mellitus, Experimental - pathology</topic><topic>Embryos</topic><topic>Enzymes</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation</topic><topic>Heterogeneity</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - statistics &amp; numerical data</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Metabolites</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Optical Imaging - methods</topic><topic>Optical Imaging - statistics &amp; numerical data</topic><topic>Pancreatic Neoplasms - genetics</topic><topic>Pancreatic Neoplasms - metabolism</topic><topic>Pancreatic Neoplasms - ultrastructure</topic><topic>Receptors, Progesterone - genetics</topic><topic>Receptors, Progesterone - metabolism</topic><topic>Science</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><topic>Subpopulations</topic><topic>Thy-1 Antigens - genetics</topic><topic>Thy-1 Antigens - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gosnell, Martin E.</creatorcontrib><creatorcontrib>Anwer, Ayad G.</creatorcontrib><creatorcontrib>Mahbub, Saabah B.</creatorcontrib><creatorcontrib>Menon Perinchery, Sandeep</creatorcontrib><creatorcontrib>Inglis, David W.</creatorcontrib><creatorcontrib>Adhikary, Partho P.</creatorcontrib><creatorcontrib>Jazayeri, Jalal A.</creatorcontrib><creatorcontrib>Cahill, Michael A.</creatorcontrib><creatorcontrib>Saad, Sonia</creatorcontrib><creatorcontrib>Pollock, Carol A.</creatorcontrib><creatorcontrib>Sutton-McDowall, Melanie L.</creatorcontrib><creatorcontrib>Thompson, Jeremy G.</creatorcontrib><creatorcontrib>Goldys, Ewa M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gosnell, Martin E.</au><au>Anwer, Ayad G.</au><au>Mahbub, Saabah B.</au><au>Menon Perinchery, Sandeep</au><au>Inglis, David W.</au><au>Adhikary, Partho P.</au><au>Jazayeri, Jalal A.</au><au>Cahill, Michael A.</au><au>Saad, Sonia</au><au>Pollock, Carol A.</au><au>Sutton-McDowall, Melanie L.</au><au>Thompson, Jeremy G.</au><au>Goldys, Ewa M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative non-invasive cell characterisation and discrimination based on multispectral autofluorescence features</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-03-31</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>23453</spage><epage>23453</epage><pages>23453-23453</pages><artnum>23453</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Automated and unbiased methods of non-invasive cell monitoring able to deal with complex biological heterogeneity are fundamentally important for biology and medicine. Label-free cell imaging provides information about endogenous autofluorescent metabolites, enzymes and cofactors in cells. However extracting high content information from autofluorescence imaging has been hitherto impossible. Here, we quantitatively characterise cell populations in different tissue types, live or fixed, by using novel image processing and a simple multispectral upgrade of a wide-field fluorescence microscope. Our optimal discrimination approach enables statistical hypothesis testing and intuitive visualisations where previously undetectable differences become clearly apparent. Label-free classifications are validated by the analysis of Classification Determinant (CD) antigen expression. The versatility of our method is illustrated by detecting genetic mutations in cancer, non-invasive monitoring of CD90 expression, label-free tracking of stem cell differentiation, identifying stem cell subpopulations with varying functional characteristics, tissue diagnostics in diabetes and assessing the condition of preimplantation embryos.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27029742</pmid><doi>10.1038/srep23453</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-03, Vol.6 (1), p.23453-23453, Article 23453
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4814840
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 631/57
631/57/2267
Animals
Blastocyst - metabolism
Blastocyst - ultrastructure
Cancer
CD90 antigen
Cell Differentiation
Cell Line, Tumor
Cell Tracking - instrumentation
Cell Tracking - methods
Cofactors
Diabetes mellitus
Diabetes Mellitus, Experimental - genetics
Diabetes Mellitus, Experimental - metabolism
Diabetes Mellitus, Experimental - pathology
Embryos
Enzymes
Gene Expression
Gene Expression Regulation
Heterogeneity
Humanities and Social Sciences
Humans
Image processing
Image Processing, Computer-Assisted - statistics & numerical data
Membrane Proteins - genetics
Membrane Proteins - metabolism
Metabolites
Mice
multidisciplinary
Mutation
Optical Imaging - methods
Optical Imaging - statistics & numerical data
Pancreatic Neoplasms - genetics
Pancreatic Neoplasms - metabolism
Pancreatic Neoplasms - ultrastructure
Receptors, Progesterone - genetics
Receptors, Progesterone - metabolism
Science
Stem cells
Stem Cells - cytology
Stem Cells - metabolism
Subpopulations
Thy-1 Antigens - genetics
Thy-1 Antigens - metabolism
title Quantitative non-invasive cell characterisation and discrimination based on multispectral autofluorescence features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20non-invasive%20cell%20characterisation%20and%20discrimination%20based%20on%20multispectral%20autofluorescence%20features&rft.jtitle=Scientific%20reports&rft.au=Gosnell,%20Martin%20E.&rft.date=2016-03-31&rft.volume=6&rft.issue=1&rft.spage=23453&rft.epage=23453&rft.pages=23453-23453&rft.artnum=23453&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep23453&rft_dat=%3Cproquest_pubme%3E1898687339%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898687339&rft_id=info:pmid/27029742&rfr_iscdi=true