Structure and mechanism of the phage T4 recombination mediator protein UvsY

The UvsY recombination mediator protein is critical for efficient homologous recombination in bacteriophage T4 and is the functional analog of the eukaryotic Rad52 protein. During T4 homologous recombination, the UvsX recombinase has to compete with the prebound gp32 single-stranded binding protein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2016-03, Vol.113 (12), p.3275-3280
Hauptverfasser: Gajewski, Stefan, Waddell, Michael Brett, Vaithiyalingam, Sivaraja, Nourse, Amanda, Li, Zhenmei, Woetzel, Nils, Alexander, Nathan, Meiler, Jens, White, Stephen W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3280
container_issue 12
container_start_page 3275
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Gajewski, Stefan
Waddell, Michael Brett
Vaithiyalingam, Sivaraja
Nourse, Amanda
Li, Zhenmei
Woetzel, Nils
Alexander, Nathan
Meiler, Jens
White, Stephen W.
description The UvsY recombination mediator protein is critical for efficient homologous recombination in bacteriophage T4 and is the functional analog of the eukaryotic Rad52 protein. During T4 homologous recombination, the UvsX recombinase has to compete with the prebound gp32 single-stranded binding protein for DNA-binding sites and UvsY stimulates this filament nucleation event. We report here the crystal structure of UvsY in four similar open-barrel heptameric assemblies and provide structural and biophysical insights into its function. The UvsY heptamer was confirmed in solution by centrifugation and light scattering, and thermodynamic analyses revealed that the UvsY–ssDNA interaction occurs within the assembly via two distinct binding modes. Using surface plasmon resonance, we also examined the binding of UvsY to both ssDNA and the ssDNA–gp32 complex. These analyses confirmed that ssDNA can bind UvsY and gp32 independently and also as a ternary complex. They also showed that residues located on the rimof the heptamer are required for optimal binding to ssDNA, thus identifying the putative ssDNA-binding surface. We propose a model in which UvsY promotes a helical ssDNA conformation that disfavors the binding of gp32 and initiates the assembly of the ssDNA–UvsX filament.
doi_str_mv 10.1073/pnas.1519154113
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4812704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26468761</jstor_id><sourcerecordid>26468761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-489486b4ccaeea379ca1b0dfc0b81674ccfc3753acf645b42e1c3ee53ac8366e3</originalsourceid><addsrcrecordid>eNqNkb1vFDEQxS0EIpeDmgpYhYbmEs_6u0FCEV8iEgVJQWV5fd6cT7f2xvZG4r_HqzuOQEVlafybN_PmIfQC8DlgQS7GYPI5MFDAKAB5hBaAFaw4VfgxWmDcipWkLT1BpzlvMcaKSfwUnbRcMeACFujr95ImW6bkGhPWzeDsxgSfhyb2Tdm4ZtyYW9dc0yY5G4fOB1N8DJVbe1NiasYUi_OhubnPP56hJ73ZZff88C7RzccP15efV1ffPn25fH-1skyRsqJSUck7aq1xzhChrIEOr3uLO1mXqvXeEsGIsT2nrKOtA0ucmwuScO7IEr3b645TVxexLpRkdnpMfjDpp47G679_gt_o23ivqYRWYFoFzvYCMRevs_Wl2rYxBGeLhpZKokSF3h6mpHg3uVz04LN1u50JLk5Zg8SMKibIf6BCCCUZ5fPoN_-g2zilUM9VqVlRiFZV6mJP2RRzTq4_mgOs5-D1HLz-E3ztePXwJkf-d9IVeH0A5s6jHJBqWJO23nuJXu6Jba7JPlCgXAoO5BfHBr1R</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1780547729</pqid></control><display><type>article</type><title>Structure and mechanism of the phage T4 recombination mediator protein UvsY</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Gajewski, Stefan ; Waddell, Michael Brett ; Vaithiyalingam, Sivaraja ; Nourse, Amanda ; Li, Zhenmei ; Woetzel, Nils ; Alexander, Nathan ; Meiler, Jens ; White, Stephen W.</creator><creatorcontrib>Gajewski, Stefan ; Waddell, Michael Brett ; Vaithiyalingam, Sivaraja ; Nourse, Amanda ; Li, Zhenmei ; Woetzel, Nils ; Alexander, Nathan ; Meiler, Jens ; White, Stephen W. ; St. Jude Children's Research Hospital, Memphis, TN (United States)</creatorcontrib><description>The UvsY recombination mediator protein is critical for efficient homologous recombination in bacteriophage T4 and is the functional analog of the eukaryotic Rad52 protein. During T4 homologous recombination, the UvsX recombinase has to compete with the prebound gp32 single-stranded binding protein for DNA-binding sites and UvsY stimulates this filament nucleation event. We report here the crystal structure of UvsY in four similar open-barrel heptameric assemblies and provide structural and biophysical insights into its function. The UvsY heptamer was confirmed in solution by centrifugation and light scattering, and thermodynamic analyses revealed that the UvsY–ssDNA interaction occurs within the assembly via two distinct binding modes. Using surface plasmon resonance, we also examined the binding of UvsY to both ssDNA and the ssDNA–gp32 complex. These analyses confirmed that ssDNA can bind UvsY and gp32 independently and also as a ternary complex. They also showed that residues located on the rimof the heptamer are required for optimal binding to ssDNA, thus identifying the putative ssDNA-binding surface. We propose a model in which UvsY promotes a helical ssDNA conformation that disfavors the binding of gp32 and initiates the assembly of the ssDNA–UvsX filament.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1519154113</identifier><identifier>PMID: 26951671</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>60 APPLIED LIFE SCIENCES ; Amino Acid Sequence ; BASIC BIOLOGICAL SCIENCES ; Biological Sciences ; Centrifugation ; Crystal structure ; crystallography ; Deoxyribonucleic acid ; DNA ; DNA architecture ; DNA binding ; Eukaryotes ; homologous recombination ; Light scattering ; Membrane Proteins - chemistry ; Membrane Proteins - physiology ; Models, Molecular ; Molecular Sequence Data ; Phage T4 ; Protein Conformation ; Proteins ; Scattering ; structural modification ; Structure-Activity Relationship ; Thermodynamics ; Viral Proteins - chemistry ; Viral Proteins - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-03, Vol.113 (12), p.3275-3280</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Mar 22, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-489486b4ccaeea379ca1b0dfc0b81674ccfc3753acf645b42e1c3ee53ac8366e3</citedby><cites>FETCH-LOGICAL-c593t-489486b4ccaeea379ca1b0dfc0b81674ccfc3753acf645b42e1c3ee53ac8366e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/113/12.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26468761$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26468761$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26951671$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1248397$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gajewski, Stefan</creatorcontrib><creatorcontrib>Waddell, Michael Brett</creatorcontrib><creatorcontrib>Vaithiyalingam, Sivaraja</creatorcontrib><creatorcontrib>Nourse, Amanda</creatorcontrib><creatorcontrib>Li, Zhenmei</creatorcontrib><creatorcontrib>Woetzel, Nils</creatorcontrib><creatorcontrib>Alexander, Nathan</creatorcontrib><creatorcontrib>Meiler, Jens</creatorcontrib><creatorcontrib>White, Stephen W.</creatorcontrib><creatorcontrib>St. Jude Children's Research Hospital, Memphis, TN (United States)</creatorcontrib><title>Structure and mechanism of the phage T4 recombination mediator protein UvsY</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The UvsY recombination mediator protein is critical for efficient homologous recombination in bacteriophage T4 and is the functional analog of the eukaryotic Rad52 protein. During T4 homologous recombination, the UvsX recombinase has to compete with the prebound gp32 single-stranded binding protein for DNA-binding sites and UvsY stimulates this filament nucleation event. We report here the crystal structure of UvsY in four similar open-barrel heptameric assemblies and provide structural and biophysical insights into its function. The UvsY heptamer was confirmed in solution by centrifugation and light scattering, and thermodynamic analyses revealed that the UvsY–ssDNA interaction occurs within the assembly via two distinct binding modes. Using surface plasmon resonance, we also examined the binding of UvsY to both ssDNA and the ssDNA–gp32 complex. These analyses confirmed that ssDNA can bind UvsY and gp32 independently and also as a ternary complex. They also showed that residues located on the rimof the heptamer are required for optimal binding to ssDNA, thus identifying the putative ssDNA-binding surface. We propose a model in which UvsY promotes a helical ssDNA conformation that disfavors the binding of gp32 and initiates the assembly of the ssDNA–UvsX filament.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Amino Acid Sequence</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological Sciences</subject><subject>Centrifugation</subject><subject>Crystal structure</subject><subject>crystallography</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA architecture</subject><subject>DNA binding</subject><subject>Eukaryotes</subject><subject>homologous recombination</subject><subject>Light scattering</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - physiology</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Phage T4</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Scattering</subject><subject>structural modification</subject><subject>Structure-Activity Relationship</subject><subject>Thermodynamics</subject><subject>Viral Proteins - chemistry</subject><subject>Viral Proteins - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkb1vFDEQxS0EIpeDmgpYhYbmEs_6u0FCEV8iEgVJQWV5fd6cT7f2xvZG4r_HqzuOQEVlafybN_PmIfQC8DlgQS7GYPI5MFDAKAB5hBaAFaw4VfgxWmDcipWkLT1BpzlvMcaKSfwUnbRcMeACFujr95ImW6bkGhPWzeDsxgSfhyb2Tdm4ZtyYW9dc0yY5G4fOB1N8DJVbe1NiasYUi_OhubnPP56hJ73ZZff88C7RzccP15efV1ffPn25fH-1skyRsqJSUck7aq1xzhChrIEOr3uLO1mXqvXeEsGIsT2nrKOtA0ucmwuScO7IEr3b645TVxexLpRkdnpMfjDpp47G679_gt_o23ivqYRWYFoFzvYCMRevs_Wl2rYxBGeLhpZKokSF3h6mpHg3uVz04LN1u50JLk5Zg8SMKibIf6BCCCUZ5fPoN_-g2zilUM9VqVlRiFZV6mJP2RRzTq4_mgOs5-D1HLz-E3ztePXwJkf-d9IVeH0A5s6jHJBqWJO23nuJXu6Jba7JPlCgXAoO5BfHBr1R</recordid><startdate>20160322</startdate><enddate>20160322</enddate><creator>Gajewski, Stefan</creator><creator>Waddell, Michael Brett</creator><creator>Vaithiyalingam, Sivaraja</creator><creator>Nourse, Amanda</creator><creator>Li, Zhenmei</creator><creator>Woetzel, Nils</creator><creator>Alexander, Nathan</creator><creator>Meiler, Jens</creator><creator>White, Stephen W.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>National Academy of Sciences, Washington, DC (United States)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20160322</creationdate><title>Structure and mechanism of the phage T4 recombination mediator protein UvsY</title><author>Gajewski, Stefan ; Waddell, Michael Brett ; Vaithiyalingam, Sivaraja ; Nourse, Amanda ; Li, Zhenmei ; Woetzel, Nils ; Alexander, Nathan ; Meiler, Jens ; White, Stephen W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-489486b4ccaeea379ca1b0dfc0b81674ccfc3753acf645b42e1c3ee53ac8366e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Amino Acid Sequence</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological Sciences</topic><topic>Centrifugation</topic><topic>Crystal structure</topic><topic>crystallography</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA architecture</topic><topic>DNA binding</topic><topic>Eukaryotes</topic><topic>homologous recombination</topic><topic>Light scattering</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - physiology</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Phage T4</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Scattering</topic><topic>structural modification</topic><topic>Structure-Activity Relationship</topic><topic>Thermodynamics</topic><topic>Viral Proteins - chemistry</topic><topic>Viral Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gajewski, Stefan</creatorcontrib><creatorcontrib>Waddell, Michael Brett</creatorcontrib><creatorcontrib>Vaithiyalingam, Sivaraja</creatorcontrib><creatorcontrib>Nourse, Amanda</creatorcontrib><creatorcontrib>Li, Zhenmei</creatorcontrib><creatorcontrib>Woetzel, Nils</creatorcontrib><creatorcontrib>Alexander, Nathan</creatorcontrib><creatorcontrib>Meiler, Jens</creatorcontrib><creatorcontrib>White, Stephen W.</creatorcontrib><creatorcontrib>St. Jude Children's Research Hospital, Memphis, TN (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gajewski, Stefan</au><au>Waddell, Michael Brett</au><au>Vaithiyalingam, Sivaraja</au><au>Nourse, Amanda</au><au>Li, Zhenmei</au><au>Woetzel, Nils</au><au>Alexander, Nathan</au><au>Meiler, Jens</au><au>White, Stephen W.</au><aucorp>St. Jude Children's Research Hospital, Memphis, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and mechanism of the phage T4 recombination mediator protein UvsY</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-03-22</date><risdate>2016</risdate><volume>113</volume><issue>12</issue><spage>3275</spage><epage>3280</epage><pages>3275-3280</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The UvsY recombination mediator protein is critical for efficient homologous recombination in bacteriophage T4 and is the functional analog of the eukaryotic Rad52 protein. During T4 homologous recombination, the UvsX recombinase has to compete with the prebound gp32 single-stranded binding protein for DNA-binding sites and UvsY stimulates this filament nucleation event. We report here the crystal structure of UvsY in four similar open-barrel heptameric assemblies and provide structural and biophysical insights into its function. The UvsY heptamer was confirmed in solution by centrifugation and light scattering, and thermodynamic analyses revealed that the UvsY–ssDNA interaction occurs within the assembly via two distinct binding modes. Using surface plasmon resonance, we also examined the binding of UvsY to both ssDNA and the ssDNA–gp32 complex. These analyses confirmed that ssDNA can bind UvsY and gp32 independently and also as a ternary complex. They also showed that residues located on the rimof the heptamer are required for optimal binding to ssDNA, thus identifying the putative ssDNA-binding surface. We propose a model in which UvsY promotes a helical ssDNA conformation that disfavors the binding of gp32 and initiates the assembly of the ssDNA–UvsX filament.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26951671</pmid><doi>10.1073/pnas.1519154113</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-03, Vol.113 (12), p.3275-3280
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4812704
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 60 APPLIED LIFE SCIENCES
Amino Acid Sequence
BASIC BIOLOGICAL SCIENCES
Biological Sciences
Centrifugation
Crystal structure
crystallography
Deoxyribonucleic acid
DNA
DNA architecture
DNA binding
Eukaryotes
homologous recombination
Light scattering
Membrane Proteins - chemistry
Membrane Proteins - physiology
Models, Molecular
Molecular Sequence Data
Phage T4
Protein Conformation
Proteins
Scattering
structural modification
Structure-Activity Relationship
Thermodynamics
Viral Proteins - chemistry
Viral Proteins - physiology
title Structure and mechanism of the phage T4 recombination mediator protein UvsY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20mechanism%20of%20the%20phage%20T4%20recombination%20mediator%20protein%20UvsY&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Gajewski,%20Stefan&rft.aucorp=St.%20Jude%20Children's%20Research%20Hospital,%20Memphis,%20TN%20(United%20States)&rft.date=2016-03-22&rft.volume=113&rft.issue=12&rft.spage=3275&rft.epage=3280&rft.pages=3275-3280&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1519154113&rft_dat=%3Cjstor_pubme%3E26468761%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1780547729&rft_id=info:pmid/26951671&rft_jstor_id=26468761&rfr_iscdi=true