Hypothesis Testing of Population Percentiles via the Wald Test with Bootstrap Variance Estimates
Testing the equality of percentiles (quantiles) between populations is an effective method for robust, nonparametric comparison, especially when the distributions are asymmetric or irregularly shaped. Unlike global nonparametric tests for homogeneity such as the Kolmogorv-Smirnov test, testing the e...
Gespeichert in:
Veröffentlicht in: | Open journal of statistics 2016-02, Vol.6 (1), p.14-24 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | 1 |
container_start_page | 14 |
container_title | Open journal of statistics |
container_volume | 6 |
creator | Johnson, William D Romer, Jacob E |
description | Testing the equality of percentiles (quantiles) between populations is an effective method for robust, nonparametric comparison, especially when the distributions are asymmetric or irregularly shaped. Unlike global nonparametric tests for homogeneity such as the Kolmogorv-Smirnov test, testing the equality of a set of percentiles (
., a
) yields an estimate of the location and extent of the differences between the populations along the entire domain. The Wald test using bootstrap estimates of variance of the order statistics provides a unified method for hypothesis testing of functions of the population percentiles. Simulation studies are conducted to show performance of the method under various scenarios and to give suggestions on its use. Several examples are given to illustrate some useful applications to real data. |
doi_str_mv | 10.4236/ojs.2016.61003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4811631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826672777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2353-919a33e7cbe4a755eaf39c164e5a82933b62bea58ad9dc1dd1242bc4786de69f3</originalsourceid><addsrcrecordid>eNpVkUtv3CAURlHVqhOls82yYpnNTHnYYDaRkiiPSiM1i_SxI9f4OkPkMS54EuXfl3l0lLABicN3P3QIOeFsXgipvoWnNBeMq7nijMkP5EhwxWeam-rj4Vz9mZBpSk8sr1KJSrDPZCI0k4Vh5og83L4OYVxi8oneYxp9_0hDS-_CsO5g9KGndxgd9qPvMNFnDzTD9Dd0zRanL35c0osQxjRGGOgviB56h_QqR61gxPSFfGqhSzjd78fk5_XV_eXtbPHj5vvl-WLmhCzlzHADUqJ2NRagyxKhlcZxVWAJlTBS1krUCGUFjWkcbxouClG7QleqQWVaeUzOdrnDul5hs6kcobNDzDXiqw3g7fub3i_tY3i2RcW5kjwHnO4DYvi7zn-zK58cdh30GNbJ8koopYXWOqPzHepiSCliexjDmd2YsdmM3ZixWzP5wde35Q74fw_yH8rCjDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826672777</pqid></control><display><type>article</type><title>Hypothesis Testing of Population Percentiles via the Wald Test with Bootstrap Variance Estimates</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Johnson, William D ; Romer, Jacob E</creator><creatorcontrib>Johnson, William D ; Romer, Jacob E</creatorcontrib><description>Testing the equality of percentiles (quantiles) between populations is an effective method for robust, nonparametric comparison, especially when the distributions are asymmetric or irregularly shaped. Unlike global nonparametric tests for homogeneity such as the Kolmogorv-Smirnov test, testing the equality of a set of percentiles (
., a
) yields an estimate of the location and extent of the differences between the populations along the entire domain. The Wald test using bootstrap estimates of variance of the order statistics provides a unified method for hypothesis testing of functions of the population percentiles. Simulation studies are conducted to show performance of the method under various scenarios and to give suggestions on its use. Several examples are given to illustrate some useful applications to real data.</description><identifier>ISSN: 2161-718X</identifier><identifier>EISSN: 2161-7198</identifier><identifier>DOI: 10.4236/ojs.2016.61003</identifier><identifier>PMID: 27034909</identifier><language>eng</language><publisher>United States</publisher><ispartof>Open journal of statistics, 2016-02, Vol.6 (1), p.14-24</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2353-919a33e7cbe4a755eaf39c164e5a82933b62bea58ad9dc1dd1242bc4786de69f3</citedby><cites>FETCH-LOGICAL-c2353-919a33e7cbe4a755eaf39c164e5a82933b62bea58ad9dc1dd1242bc4786de69f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27034909$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, William D</creatorcontrib><creatorcontrib>Romer, Jacob E</creatorcontrib><title>Hypothesis Testing of Population Percentiles via the Wald Test with Bootstrap Variance Estimates</title><title>Open journal of statistics</title><addtitle>Open J Stat</addtitle><description>Testing the equality of percentiles (quantiles) between populations is an effective method for robust, nonparametric comparison, especially when the distributions are asymmetric or irregularly shaped. Unlike global nonparametric tests for homogeneity such as the Kolmogorv-Smirnov test, testing the equality of a set of percentiles (
., a
) yields an estimate of the location and extent of the differences between the populations along the entire domain. The Wald test using bootstrap estimates of variance of the order statistics provides a unified method for hypothesis testing of functions of the population percentiles. Simulation studies are conducted to show performance of the method under various scenarios and to give suggestions on its use. Several examples are given to illustrate some useful applications to real data.</description><issn>2161-718X</issn><issn>2161-7198</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpVkUtv3CAURlHVqhOls82yYpnNTHnYYDaRkiiPSiM1i_SxI9f4OkPkMS54EuXfl3l0lLABicN3P3QIOeFsXgipvoWnNBeMq7nijMkP5EhwxWeam-rj4Vz9mZBpSk8sr1KJSrDPZCI0k4Vh5og83L4OYVxi8oneYxp9_0hDS-_CsO5g9KGndxgd9qPvMNFnDzTD9Dd0zRanL35c0osQxjRGGOgviB56h_QqR61gxPSFfGqhSzjd78fk5_XV_eXtbPHj5vvl-WLmhCzlzHADUqJ2NRagyxKhlcZxVWAJlTBS1krUCGUFjWkcbxouClG7QleqQWVaeUzOdrnDul5hs6kcobNDzDXiqw3g7fub3i_tY3i2RcW5kjwHnO4DYvi7zn-zK58cdh30GNbJ8koopYXWOqPzHepiSCliexjDmd2YsdmM3ZixWzP5wde35Q74fw_yH8rCjDg</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Johnson, William D</creator><creator>Romer, Jacob E</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160201</creationdate><title>Hypothesis Testing of Population Percentiles via the Wald Test with Bootstrap Variance Estimates</title><author>Johnson, William D ; Romer, Jacob E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2353-919a33e7cbe4a755eaf39c164e5a82933b62bea58ad9dc1dd1242bc4786de69f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Johnson, William D</creatorcontrib><creatorcontrib>Romer, Jacob E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Open journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, William D</au><au>Romer, Jacob E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypothesis Testing of Population Percentiles via the Wald Test with Bootstrap Variance Estimates</atitle><jtitle>Open journal of statistics</jtitle><addtitle>Open J Stat</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>14</spage><epage>24</epage><pages>14-24</pages><issn>2161-718X</issn><eissn>2161-7198</eissn><abstract>Testing the equality of percentiles (quantiles) between populations is an effective method for robust, nonparametric comparison, especially when the distributions are asymmetric or irregularly shaped. Unlike global nonparametric tests for homogeneity such as the Kolmogorv-Smirnov test, testing the equality of a set of percentiles (
., a
) yields an estimate of the location and extent of the differences between the populations along the entire domain. The Wald test using bootstrap estimates of variance of the order statistics provides a unified method for hypothesis testing of functions of the population percentiles. Simulation studies are conducted to show performance of the method under various scenarios and to give suggestions on its use. Several examples are given to illustrate some useful applications to real data.</abstract><cop>United States</cop><pmid>27034909</pmid><doi>10.4236/ojs.2016.61003</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2161-718X |
ispartof | Open journal of statistics, 2016-02, Vol.6 (1), p.14-24 |
issn | 2161-718X 2161-7198 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4811631 |
source | EZB-FREE-00999 freely available EZB journals |
title | Hypothesis Testing of Population Percentiles via the Wald Test with Bootstrap Variance Estimates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypothesis%20Testing%20of%20Population%20Percentiles%20via%20the%20Wald%20Test%20with%20Bootstrap%20Variance%20Estimates&rft.jtitle=Open%20journal%20of%20statistics&rft.au=Johnson,%20William%20D&rft.date=2016-02-01&rft.volume=6&rft.issue=1&rft.spage=14&rft.epage=24&rft.pages=14-24&rft.issn=2161-718X&rft.eissn=2161-7198&rft_id=info:doi/10.4236/ojs.2016.61003&rft_dat=%3Cproquest_pubme%3E1826672777%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826672777&rft_id=info:pmid/27034909&rfr_iscdi=true |