Hypothesis Testing of Population Percentiles via the Wald Test with Bootstrap Variance Estimates

Testing the equality of percentiles (quantiles) between populations is an effective method for robust, nonparametric comparison, especially when the distributions are asymmetric or irregularly shaped. Unlike global nonparametric tests for homogeneity such as the Kolmogorv-Smirnov test, testing the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Open journal of statistics 2016-02, Vol.6 (1), p.14-24
Hauptverfasser: Johnson, William D, Romer, Jacob E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 1
container_start_page 14
container_title Open journal of statistics
container_volume 6
creator Johnson, William D
Romer, Jacob E
description Testing the equality of percentiles (quantiles) between populations is an effective method for robust, nonparametric comparison, especially when the distributions are asymmetric or irregularly shaped. Unlike global nonparametric tests for homogeneity such as the Kolmogorv-Smirnov test, testing the equality of a set of percentiles ( ., a ) yields an estimate of the location and extent of the differences between the populations along the entire domain. The Wald test using bootstrap estimates of variance of the order statistics provides a unified method for hypothesis testing of functions of the population percentiles. Simulation studies are conducted to show performance of the method under various scenarios and to give suggestions on its use. Several examples are given to illustrate some useful applications to real data.
doi_str_mv 10.4236/ojs.2016.61003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4811631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826672777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2353-919a33e7cbe4a755eaf39c164e5a82933b62bea58ad9dc1dd1242bc4786de69f3</originalsourceid><addsrcrecordid>eNpVkUtv3CAURlHVqhOls82yYpnNTHnYYDaRkiiPSiM1i_SxI9f4OkPkMS54EuXfl3l0lLABicN3P3QIOeFsXgipvoWnNBeMq7nijMkP5EhwxWeam-rj4Vz9mZBpSk8sr1KJSrDPZCI0k4Vh5og83L4OYVxi8oneYxp9_0hDS-_CsO5g9KGndxgd9qPvMNFnDzTD9Dd0zRanL35c0osQxjRGGOgviB56h_QqR61gxPSFfGqhSzjd78fk5_XV_eXtbPHj5vvl-WLmhCzlzHADUqJ2NRagyxKhlcZxVWAJlTBS1krUCGUFjWkcbxouClG7QleqQWVaeUzOdrnDul5hs6kcobNDzDXiqw3g7fub3i_tY3i2RcW5kjwHnO4DYvi7zn-zK58cdh30GNbJ8koopYXWOqPzHepiSCliexjDmd2YsdmM3ZixWzP5wde35Q74fw_yH8rCjDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826672777</pqid></control><display><type>article</type><title>Hypothesis Testing of Population Percentiles via the Wald Test with Bootstrap Variance Estimates</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Johnson, William D ; Romer, Jacob E</creator><creatorcontrib>Johnson, William D ; Romer, Jacob E</creatorcontrib><description>Testing the equality of percentiles (quantiles) between populations is an effective method for robust, nonparametric comparison, especially when the distributions are asymmetric or irregularly shaped. Unlike global nonparametric tests for homogeneity such as the Kolmogorv-Smirnov test, testing the equality of a set of percentiles ( ., a ) yields an estimate of the location and extent of the differences between the populations along the entire domain. The Wald test using bootstrap estimates of variance of the order statistics provides a unified method for hypothesis testing of functions of the population percentiles. Simulation studies are conducted to show performance of the method under various scenarios and to give suggestions on its use. Several examples are given to illustrate some useful applications to real data.</description><identifier>ISSN: 2161-718X</identifier><identifier>EISSN: 2161-7198</identifier><identifier>DOI: 10.4236/ojs.2016.61003</identifier><identifier>PMID: 27034909</identifier><language>eng</language><publisher>United States</publisher><ispartof>Open journal of statistics, 2016-02, Vol.6 (1), p.14-24</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2353-919a33e7cbe4a755eaf39c164e5a82933b62bea58ad9dc1dd1242bc4786de69f3</citedby><cites>FETCH-LOGICAL-c2353-919a33e7cbe4a755eaf39c164e5a82933b62bea58ad9dc1dd1242bc4786de69f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27034909$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, William D</creatorcontrib><creatorcontrib>Romer, Jacob E</creatorcontrib><title>Hypothesis Testing of Population Percentiles via the Wald Test with Bootstrap Variance Estimates</title><title>Open journal of statistics</title><addtitle>Open J Stat</addtitle><description>Testing the equality of percentiles (quantiles) between populations is an effective method for robust, nonparametric comparison, especially when the distributions are asymmetric or irregularly shaped. Unlike global nonparametric tests for homogeneity such as the Kolmogorv-Smirnov test, testing the equality of a set of percentiles ( ., a ) yields an estimate of the location and extent of the differences between the populations along the entire domain. The Wald test using bootstrap estimates of variance of the order statistics provides a unified method for hypothesis testing of functions of the population percentiles. Simulation studies are conducted to show performance of the method under various scenarios and to give suggestions on its use. Several examples are given to illustrate some useful applications to real data.</description><issn>2161-718X</issn><issn>2161-7198</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpVkUtv3CAURlHVqhOls82yYpnNTHnYYDaRkiiPSiM1i_SxI9f4OkPkMS54EuXfl3l0lLABicN3P3QIOeFsXgipvoWnNBeMq7nijMkP5EhwxWeam-rj4Vz9mZBpSk8sr1KJSrDPZCI0k4Vh5og83L4OYVxi8oneYxp9_0hDS-_CsO5g9KGndxgd9qPvMNFnDzTD9Dd0zRanL35c0osQxjRGGOgviB56h_QqR61gxPSFfGqhSzjd78fk5_XV_eXtbPHj5vvl-WLmhCzlzHADUqJ2NRagyxKhlcZxVWAJlTBS1krUCGUFjWkcbxouClG7QleqQWVaeUzOdrnDul5hs6kcobNDzDXiqw3g7fub3i_tY3i2RcW5kjwHnO4DYvi7zn-zK58cdh30GNbJ8koopYXWOqPzHepiSCliexjDmd2YsdmM3ZixWzP5wde35Q74fw_yH8rCjDg</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Johnson, William D</creator><creator>Romer, Jacob E</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160201</creationdate><title>Hypothesis Testing of Population Percentiles via the Wald Test with Bootstrap Variance Estimates</title><author>Johnson, William D ; Romer, Jacob E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2353-919a33e7cbe4a755eaf39c164e5a82933b62bea58ad9dc1dd1242bc4786de69f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Johnson, William D</creatorcontrib><creatorcontrib>Romer, Jacob E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Open journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, William D</au><au>Romer, Jacob E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypothesis Testing of Population Percentiles via the Wald Test with Bootstrap Variance Estimates</atitle><jtitle>Open journal of statistics</jtitle><addtitle>Open J Stat</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>14</spage><epage>24</epage><pages>14-24</pages><issn>2161-718X</issn><eissn>2161-7198</eissn><abstract>Testing the equality of percentiles (quantiles) between populations is an effective method for robust, nonparametric comparison, especially when the distributions are asymmetric or irregularly shaped. Unlike global nonparametric tests for homogeneity such as the Kolmogorv-Smirnov test, testing the equality of a set of percentiles ( ., a ) yields an estimate of the location and extent of the differences between the populations along the entire domain. The Wald test using bootstrap estimates of variance of the order statistics provides a unified method for hypothesis testing of functions of the population percentiles. Simulation studies are conducted to show performance of the method under various scenarios and to give suggestions on its use. Several examples are given to illustrate some useful applications to real data.</abstract><cop>United States</cop><pmid>27034909</pmid><doi>10.4236/ojs.2016.61003</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2161-718X
ispartof Open journal of statistics, 2016-02, Vol.6 (1), p.14-24
issn 2161-718X
2161-7198
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4811631
source EZB-FREE-00999 freely available EZB journals
title Hypothesis Testing of Population Percentiles via the Wald Test with Bootstrap Variance Estimates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypothesis%20Testing%20of%20Population%20Percentiles%20via%20the%20Wald%20Test%20with%20Bootstrap%20Variance%20Estimates&rft.jtitle=Open%20journal%20of%20statistics&rft.au=Johnson,%20William%20D&rft.date=2016-02-01&rft.volume=6&rft.issue=1&rft.spage=14&rft.epage=24&rft.pages=14-24&rft.issn=2161-718X&rft.eissn=2161-7198&rft_id=info:doi/10.4236/ojs.2016.61003&rft_dat=%3Cproquest_pubme%3E1826672777%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826672777&rft_id=info:pmid/27034909&rfr_iscdi=true