Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection
Many intracellular pathogens cause disease by subverting macrophage innate immune defense mechanisms. Intracellular pathogens actively avoid delivery to or directly target lysosomes, the major intracellular degradative organelle. In this article, we demonstrate that activator of G-protein signaling...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 2016-01, Vol.196 (2), p.846-856 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 856 |
---|---|
container_issue | 2 |
container_start_page | 846 |
container_title | The Journal of immunology (1950) |
container_volume | 196 |
creator | Vural, Ali Al-Khodor, Souhaila Cheung, Gordon Y C Shi, Chong-Shan Srinivasan, Lalitha McQuiston, Travis J Hwang, Il-Young Yeh, Anthony J Blumer, Joe B Briken, Volker Williamson, Peter R Otto, Michael Fraser, Iain D C Kehrl, John H |
description | Many intracellular pathogens cause disease by subverting macrophage innate immune defense mechanisms. Intracellular pathogens actively avoid delivery to or directly target lysosomes, the major intracellular degradative organelle. In this article, we demonstrate that activator of G-protein signaling 3 (AGS3), an LPS-inducible protein in macrophages, affects both lysosomal biogenesis and activity. AGS3 binds the Gi family of G proteins via its G-protein regulatory (GoLoco) motif, stabilizing the Gα subunit in its GDP-bound conformation. Elevated AGS3 levels in macrophages limited the activity of the mammalian target of rapamycin pathway, a sensor of cellular nutritional status. This triggered the nuclear translocation of transcription factor EB, a known activator of lysosomal gene transcription. In contrast, AGS3-deficient macrophages had increased mammalian target of rapamycin activity, reduced transcription factor EB activity, and a lower lysosomal mass. High levels of AGS3 in macrophages enhanced their resistance to infection by Burkholderia cenocepacia J2315, Mycobacterium tuberculosis, and methicillin-resistant Staphylococcus aureus, whereas AGS3-deficient macrophages were more susceptible. We conclude that LPS priming increases AGS3 levels, which enhances lysosomal function and increases the capacity of macrophages to eliminate intracellular pathogens. |
doi_str_mv | 10.4049/jimmunol.1501595 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4811337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760878220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-e41430a30f90da165e23a58d8bba7d71c351a757eae8577532eb68ebf58065eb3</originalsourceid><addsrcrecordid>eNpVUU1P3DAQtapWZUt776nysZfA2I7t7KUSIEpXWlQk2rM1SSbBKLG3doLEv29WLAhOc5j3MfMeY18FnJRQrk_v_TjOIQ4nQoPQa_2OrYTWUBgD5j1bAUhZCGvsEfuU8z0AGJDlR3YkjTFWWLli-ayZ_ANOMfHY8aviJsWJfOC3vg84-NBzVWxCOzfU8u1jjjmOOPBzH3sKlH3mWz_6KfNrbFLc3WFPfBOmhA0Nwzxg4ufYTJT8QtqEjhazGD6zDx0Omb4c5jH7-_Pyz8WvYvv7anNxti0atTZTQaUoFaCCbg0tCqNJKtRVW9U12taKRmmBVltCqrS1WkmqTUV1pytYwLU6Zj-edHdzPVLb0P6wwe2SHzE9uojevd0Ef-f6-ODKSgil7CLw_SCQ4r-Z8uRGn_efYaA4Z7dEC5WtpIQFCk_QJYacE3UvNgLcviv33JU7dLVQvr0-74XwXI76D7_ZlL8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760878220</pqid></control><display><type>article</type><title>Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Vural, Ali ; Al-Khodor, Souhaila ; Cheung, Gordon Y C ; Shi, Chong-Shan ; Srinivasan, Lalitha ; McQuiston, Travis J ; Hwang, Il-Young ; Yeh, Anthony J ; Blumer, Joe B ; Briken, Volker ; Williamson, Peter R ; Otto, Michael ; Fraser, Iain D C ; Kehrl, John H</creator><creatorcontrib>Vural, Ali ; Al-Khodor, Souhaila ; Cheung, Gordon Y C ; Shi, Chong-Shan ; Srinivasan, Lalitha ; McQuiston, Travis J ; Hwang, Il-Young ; Yeh, Anthony J ; Blumer, Joe B ; Briken, Volker ; Williamson, Peter R ; Otto, Michael ; Fraser, Iain D C ; Kehrl, John H</creatorcontrib><description>Many intracellular pathogens cause disease by subverting macrophage innate immune defense mechanisms. Intracellular pathogens actively avoid delivery to or directly target lysosomes, the major intracellular degradative organelle. In this article, we demonstrate that activator of G-protein signaling 3 (AGS3), an LPS-inducible protein in macrophages, affects both lysosomal biogenesis and activity. AGS3 binds the Gi family of G proteins via its G-protein regulatory (GoLoco) motif, stabilizing the Gα subunit in its GDP-bound conformation. Elevated AGS3 levels in macrophages limited the activity of the mammalian target of rapamycin pathway, a sensor of cellular nutritional status. This triggered the nuclear translocation of transcription factor EB, a known activator of lysosomal gene transcription. In contrast, AGS3-deficient macrophages had increased mammalian target of rapamycin activity, reduced transcription factor EB activity, and a lower lysosomal mass. High levels of AGS3 in macrophages enhanced their resistance to infection by Burkholderia cenocepacia J2315, Mycobacterium tuberculosis, and methicillin-resistant Staphylococcus aureus, whereas AGS3-deficient macrophages were more susceptible. We conclude that LPS priming increases AGS3 levels, which enhances lysosomal function and increases the capacity of macrophages to eliminate intracellular pathogens.</description><identifier>ISSN: 0022-1767</identifier><identifier>EISSN: 1550-6606</identifier><identifier>DOI: 10.4049/jimmunol.1501595</identifier><identifier>PMID: 26667172</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Bacterial Infections - immunology ; Carrier Proteins - immunology ; Flow Cytometry ; Immunoblotting ; Lysosomes - immunology ; Macrophages - immunology ; Macrophages - microbiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microscopy, Confocal ; Polymerase Chain Reaction ; RNA, Small Interfering</subject><ispartof>The Journal of immunology (1950), 2016-01, Vol.196 (2), p.846-856</ispartof><rights>Copyright © 2016 by The American Association of Immunologists, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-e41430a30f90da165e23a58d8bba7d71c351a757eae8577532eb68ebf58065eb3</citedby><cites>FETCH-LOGICAL-c396t-e41430a30f90da165e23a58d8bba7d71c351a757eae8577532eb68ebf58065eb3</cites><orcidid>0000-0002-6526-159X ; 0000-0001-7826-8101 ; 0000-0002-2222-4115 ; 0000-0003-1796-6058 ; 0000-0002-0020-3815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26667172$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vural, Ali</creatorcontrib><creatorcontrib>Al-Khodor, Souhaila</creatorcontrib><creatorcontrib>Cheung, Gordon Y C</creatorcontrib><creatorcontrib>Shi, Chong-Shan</creatorcontrib><creatorcontrib>Srinivasan, Lalitha</creatorcontrib><creatorcontrib>McQuiston, Travis J</creatorcontrib><creatorcontrib>Hwang, Il-Young</creatorcontrib><creatorcontrib>Yeh, Anthony J</creatorcontrib><creatorcontrib>Blumer, Joe B</creatorcontrib><creatorcontrib>Briken, Volker</creatorcontrib><creatorcontrib>Williamson, Peter R</creatorcontrib><creatorcontrib>Otto, Michael</creatorcontrib><creatorcontrib>Fraser, Iain D C</creatorcontrib><creatorcontrib>Kehrl, John H</creatorcontrib><title>Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection</title><title>The Journal of immunology (1950)</title><addtitle>J Immunol</addtitle><description>Many intracellular pathogens cause disease by subverting macrophage innate immune defense mechanisms. Intracellular pathogens actively avoid delivery to or directly target lysosomes, the major intracellular degradative organelle. In this article, we demonstrate that activator of G-protein signaling 3 (AGS3), an LPS-inducible protein in macrophages, affects both lysosomal biogenesis and activity. AGS3 binds the Gi family of G proteins via its G-protein regulatory (GoLoco) motif, stabilizing the Gα subunit in its GDP-bound conformation. Elevated AGS3 levels in macrophages limited the activity of the mammalian target of rapamycin pathway, a sensor of cellular nutritional status. This triggered the nuclear translocation of transcription factor EB, a known activator of lysosomal gene transcription. In contrast, AGS3-deficient macrophages had increased mammalian target of rapamycin activity, reduced transcription factor EB activity, and a lower lysosomal mass. High levels of AGS3 in macrophages enhanced their resistance to infection by Burkholderia cenocepacia J2315, Mycobacterium tuberculosis, and methicillin-resistant Staphylococcus aureus, whereas AGS3-deficient macrophages were more susceptible. We conclude that LPS priming increases AGS3 levels, which enhances lysosomal function and increases the capacity of macrophages to eliminate intracellular pathogens.</description><subject>Animals</subject><subject>Bacterial Infections - immunology</subject><subject>Carrier Proteins - immunology</subject><subject>Flow Cytometry</subject><subject>Immunoblotting</subject><subject>Lysosomes - immunology</subject><subject>Macrophages - immunology</subject><subject>Macrophages - microbiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microscopy, Confocal</subject><subject>Polymerase Chain Reaction</subject><subject>RNA, Small Interfering</subject><issn>0022-1767</issn><issn>1550-6606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1P3DAQtapWZUt776nysZfA2I7t7KUSIEpXWlQk2rM1SSbBKLG3doLEv29WLAhOc5j3MfMeY18FnJRQrk_v_TjOIQ4nQoPQa_2OrYTWUBgD5j1bAUhZCGvsEfuU8z0AGJDlR3YkjTFWWLli-ayZ_ANOMfHY8aviJsWJfOC3vg84-NBzVWxCOzfU8u1jjjmOOPBzH3sKlH3mWz_6KfNrbFLc3WFPfBOmhA0Nwzxg4ufYTJT8QtqEjhazGD6zDx0Omb4c5jH7-_Pyz8WvYvv7anNxti0atTZTQaUoFaCCbg0tCqNJKtRVW9U12taKRmmBVltCqrS1WkmqTUV1pytYwLU6Zj-edHdzPVLb0P6wwe2SHzE9uojevd0Ef-f6-ODKSgil7CLw_SCQ4r-Z8uRGn_efYaA4Z7dEC5WtpIQFCk_QJYacE3UvNgLcviv33JU7dLVQvr0-74XwXI76D7_ZlL8</recordid><startdate>20160115</startdate><enddate>20160115</enddate><creator>Vural, Ali</creator><creator>Al-Khodor, Souhaila</creator><creator>Cheung, Gordon Y C</creator><creator>Shi, Chong-Shan</creator><creator>Srinivasan, Lalitha</creator><creator>McQuiston, Travis J</creator><creator>Hwang, Il-Young</creator><creator>Yeh, Anthony J</creator><creator>Blumer, Joe B</creator><creator>Briken, Volker</creator><creator>Williamson, Peter R</creator><creator>Otto, Michael</creator><creator>Fraser, Iain D C</creator><creator>Kehrl, John H</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6526-159X</orcidid><orcidid>https://orcid.org/0000-0001-7826-8101</orcidid><orcidid>https://orcid.org/0000-0002-2222-4115</orcidid><orcidid>https://orcid.org/0000-0003-1796-6058</orcidid><orcidid>https://orcid.org/0000-0002-0020-3815</orcidid></search><sort><creationdate>20160115</creationdate><title>Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection</title><author>Vural, Ali ; Al-Khodor, Souhaila ; Cheung, Gordon Y C ; Shi, Chong-Shan ; Srinivasan, Lalitha ; McQuiston, Travis J ; Hwang, Il-Young ; Yeh, Anthony J ; Blumer, Joe B ; Briken, Volker ; Williamson, Peter R ; Otto, Michael ; Fraser, Iain D C ; Kehrl, John H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-e41430a30f90da165e23a58d8bba7d71c351a757eae8577532eb68ebf58065eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Bacterial Infections - immunology</topic><topic>Carrier Proteins - immunology</topic><topic>Flow Cytometry</topic><topic>Immunoblotting</topic><topic>Lysosomes - immunology</topic><topic>Macrophages - immunology</topic><topic>Macrophages - microbiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microscopy, Confocal</topic><topic>Polymerase Chain Reaction</topic><topic>RNA, Small Interfering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vural, Ali</creatorcontrib><creatorcontrib>Al-Khodor, Souhaila</creatorcontrib><creatorcontrib>Cheung, Gordon Y C</creatorcontrib><creatorcontrib>Shi, Chong-Shan</creatorcontrib><creatorcontrib>Srinivasan, Lalitha</creatorcontrib><creatorcontrib>McQuiston, Travis J</creatorcontrib><creatorcontrib>Hwang, Il-Young</creatorcontrib><creatorcontrib>Yeh, Anthony J</creatorcontrib><creatorcontrib>Blumer, Joe B</creatorcontrib><creatorcontrib>Briken, Volker</creatorcontrib><creatorcontrib>Williamson, Peter R</creatorcontrib><creatorcontrib>Otto, Michael</creatorcontrib><creatorcontrib>Fraser, Iain D C</creatorcontrib><creatorcontrib>Kehrl, John H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of immunology (1950)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vural, Ali</au><au>Al-Khodor, Souhaila</au><au>Cheung, Gordon Y C</au><au>Shi, Chong-Shan</au><au>Srinivasan, Lalitha</au><au>McQuiston, Travis J</au><au>Hwang, Il-Young</au><au>Yeh, Anthony J</au><au>Blumer, Joe B</au><au>Briken, Volker</au><au>Williamson, Peter R</au><au>Otto, Michael</au><au>Fraser, Iain D C</au><au>Kehrl, John H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection</atitle><jtitle>The Journal of immunology (1950)</jtitle><addtitle>J Immunol</addtitle><date>2016-01-15</date><risdate>2016</risdate><volume>196</volume><issue>2</issue><spage>846</spage><epage>856</epage><pages>846-856</pages><issn>0022-1767</issn><eissn>1550-6606</eissn><abstract>Many intracellular pathogens cause disease by subverting macrophage innate immune defense mechanisms. Intracellular pathogens actively avoid delivery to or directly target lysosomes, the major intracellular degradative organelle. In this article, we demonstrate that activator of G-protein signaling 3 (AGS3), an LPS-inducible protein in macrophages, affects both lysosomal biogenesis and activity. AGS3 binds the Gi family of G proteins via its G-protein regulatory (GoLoco) motif, stabilizing the Gα subunit in its GDP-bound conformation. Elevated AGS3 levels in macrophages limited the activity of the mammalian target of rapamycin pathway, a sensor of cellular nutritional status. This triggered the nuclear translocation of transcription factor EB, a known activator of lysosomal gene transcription. In contrast, AGS3-deficient macrophages had increased mammalian target of rapamycin activity, reduced transcription factor EB activity, and a lower lysosomal mass. High levels of AGS3 in macrophages enhanced their resistance to infection by Burkholderia cenocepacia J2315, Mycobacterium tuberculosis, and methicillin-resistant Staphylococcus aureus, whereas AGS3-deficient macrophages were more susceptible. We conclude that LPS priming increases AGS3 levels, which enhances lysosomal function and increases the capacity of macrophages to eliminate intracellular pathogens.</abstract><cop>United States</cop><pmid>26667172</pmid><doi>10.4049/jimmunol.1501595</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6526-159X</orcidid><orcidid>https://orcid.org/0000-0001-7826-8101</orcidid><orcidid>https://orcid.org/0000-0002-2222-4115</orcidid><orcidid>https://orcid.org/0000-0003-1796-6058</orcidid><orcidid>https://orcid.org/0000-0002-0020-3815</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1767 |
ispartof | The Journal of immunology (1950), 2016-01, Vol.196 (2), p.846-856 |
issn | 0022-1767 1550-6606 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4811337 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Animals Bacterial Infections - immunology Carrier Proteins - immunology Flow Cytometry Immunoblotting Lysosomes - immunology Macrophages - immunology Macrophages - microbiology Mice Mice, Inbred C57BL Mice, Knockout Microscopy, Confocal Polymerase Chain Reaction RNA, Small Interfering |
title | Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A34%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activator%20of%20G-Protein%20Signaling%203-Induced%20Lysosomal%20Biogenesis%20Limits%20Macrophage%20Intracellular%20Bacterial%20Infection&rft.jtitle=The%20Journal%20of%20immunology%20(1950)&rft.au=Vural,%20Ali&rft.date=2016-01-15&rft.volume=196&rft.issue=2&rft.spage=846&rft.epage=856&rft.pages=846-856&rft.issn=0022-1767&rft.eissn=1550-6606&rft_id=info:doi/10.4049/jimmunol.1501595&rft_dat=%3Cproquest_pubme%3E1760878220%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1760878220&rft_id=info:pmid/26667172&rfr_iscdi=true |