Corilagin suppresses cholangiocarcinoma progression through Notch signaling pathway in vitro and in vivo

Corilagin is a natural plant polyphenol tannic acid with antitumor, anti-inflammatory, and anti-oxidative properties. However, the mechanisms of its actions are largely unknown. Our group reported that corilagin could induce cell inhibition in human breast cancer cell line MCF-7 and human liver hepa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of oncology 2016-05, Vol.48 (5), p.1868-1876
Hauptverfasser: GU, YUE, XIAO, LINFENG, MING, YANLIN, ZHENG, ZHIZHONG, LI, WENGANG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1876
container_issue 5
container_start_page 1868
container_title International journal of oncology
container_volume 48
creator GU, YUE
XIAO, LINFENG
MING, YANLIN
ZHENG, ZHIZHONG
LI, WENGANG
description Corilagin is a natural plant polyphenol tannic acid with antitumor, anti-inflammatory, and anti-oxidative properties. However, the mechanisms of its actions are largely unknown. Our group reported that corilagin could induce cell inhibition in human breast cancer cell line MCF-7 and human liver hepatocellular carcinoma cell lines HepG2. We report here that corilagin inhibits cholangiocarcinoma (CCA) development through regulating Notch signaling pathway. We found that, in vitro, corilagin inhibited CCA cell proliferation, migration and invasion, promoted CCA cell apoptosis, and inhibited Notch1 and Notch signaling pathway protein expression. Co-immunoprecipitation was used to establish Notch intracellular domain (NICD) interaction with MAML1 and P300 in CCA. Importantly, corilagin reduced Hes1 mRNA level through inhibiting Hes1 promoter activity. In nude mice, corilagin inhibited CCA growth and repressed the expression of Notch1 and mTOR. These results indicate that corilagin may control CCA cell growth by downregulating the expression of Notch1. Therefore, our findings suggest that corilagin may have the potential to become a new therapeutic drug for human CCA.
doi_str_mv 10.3892/ijo.2016.3413
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4809656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A456289615</galeid><sourcerecordid>A456289615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-678ea7d6b9e102a2be515f6ca734d04b61395fd6116bb4942f37953e88d21f6c3</originalsourceid><addsrcrecordid>eNptkt-L1DAQx4so3g999FUKgj51ze8mL8Kx6Ckc-qLPIU3TNkubqUm7x_33ZtlzvQXJwySZz3xhZr5F8QajDZWKfPQ72BCExYYyTJ8Vl7hWuCKM0Of5jrCqBKPqorhKaYcQ4Rzhl8UFEYpyieRlMWwh-tH0PpRpnefoUnKptAOMJvQerInWB5hMOUfoD1kPoVyGCGs_lN9hsUOZfB_M6ENfzmYZ7s1DmcX2folQmtAeH3t4VbzozJjc68d4Xfz68vnn9mt19-P22_bmrrKc8aUStXSmbkWjHEbEkMZxzDthTU1Zi1gjMFW8awXGommYYqSjteLUSdkSnDl6XXw66s5rM7nWurBEM-o5-snEBw3G6_NM8IPuYa-ZREpwkQXePQpE-L26tOgdrDF3mDRWlFCk6hr9o3ozOu1DB1nMTj5ZfcO4IFIJzDO1-Q-VT-smbyG4zuf_s4L3TwoGZ8ZlSDCuSx57OgerI2gjpBRdd-oQI30whs7G0Adj6IMxMv_26VhO9F8nZODDEUhz3ppvIZ2YrFQxWSFeYSkk_QNFaMGa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932309770</pqid></control><display><type>article</type><title>Corilagin suppresses cholangiocarcinoma progression through Notch signaling pathway in vitro and in vivo</title><source>Spandidos Publications Journals</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>GU, YUE ; XIAO, LINFENG ; MING, YANLIN ; ZHENG, ZHIZHONG ; LI, WENGANG</creator><creatorcontrib>GU, YUE ; XIAO, LINFENG ; MING, YANLIN ; ZHENG, ZHIZHONG ; LI, WENGANG</creatorcontrib><description>Corilagin is a natural plant polyphenol tannic acid with antitumor, anti-inflammatory, and anti-oxidative properties. However, the mechanisms of its actions are largely unknown. Our group reported that corilagin could induce cell inhibition in human breast cancer cell line MCF-7 and human liver hepatocellular carcinoma cell lines HepG2. We report here that corilagin inhibits cholangiocarcinoma (CCA) development through regulating Notch signaling pathway. We found that, in vitro, corilagin inhibited CCA cell proliferation, migration and invasion, promoted CCA cell apoptosis, and inhibited Notch1 and Notch signaling pathway protein expression. Co-immunoprecipitation was used to establish Notch intracellular domain (NICD) interaction with MAML1 and P300 in CCA. Importantly, corilagin reduced Hes1 mRNA level through inhibiting Hes1 promoter activity. In nude mice, corilagin inhibited CCA growth and repressed the expression of Notch1 and mTOR. These results indicate that corilagin may control CCA cell growth by downregulating the expression of Notch1. Therefore, our findings suggest that corilagin may have the potential to become a new therapeutic drug for human CCA.</description><identifier>ISSN: 1019-6439</identifier><identifier>EISSN: 1791-2423</identifier><identifier>DOI: 10.3892/ijo.2016.3413</identifier><identifier>PMID: 26935808</identifier><language>eng</language><publisher>Greece: D.A. Spandidos</publisher><subject>Animals ; Antineoplastic Agents - administration &amp; dosage ; Antineoplastic Agents - pharmacology ; Apoptosis ; Bile Duct Neoplasms - drug therapy ; Bile Duct Neoplasms - genetics ; Bile Duct Neoplasms - metabolism ; Breast cancer ; Cancer therapies ; Cell growth ; Cell Line, Tumor ; Cell Movement - drug effects ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Cellular signal transduction ; Chemotherapy ; Chinese medicine ; Cholangiocarcinoma ; Cholangiocarcinoma - drug therapy ; Cholangiocarcinoma - genetics ; Cholangiocarcinoma - metabolism ; corilagin ; Cytotoxicity ; Disease Progression ; Drug resistance ; Gene Expression Regulation, Neoplastic - drug effects ; Genetic aspects ; Glucosides - administration &amp; dosage ; Glucosides - pharmacology ; Health aspects ; Humans ; Hydrolyzable Tannins - administration &amp; dosage ; Hydrolyzable Tannins - pharmacology ; In Vitro Techniques ; invasion ; Medical prognosis ; Messenger RNA ; Mice ; Mice, Nude ; migration ; Notch signaling pathway ; Oxidative stress ; proliferation ; Properties ; Protein expression ; Proteins ; R&amp;D ; Receptors, Notch - metabolism ; Research &amp; development ; Rodents ; Signal Transduction - drug effects ; Studies ; Tannins ; Transcription Factor HES-1 - genetics ; Xenograft Model Antitumor Assays</subject><ispartof>International journal of oncology, 2016-05, Vol.48 (5), p.1868-1876</ispartof><rights>Copyright: © Gu et al.</rights><rights>COPYRIGHT 2016 Spandidos Publications</rights><rights>Copyright Spandidos Publications UK Ltd. 2016</rights><rights>Copyright: © Gu et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-678ea7d6b9e102a2be515f6ca734d04b61395fd6116bb4942f37953e88d21f6c3</citedby><cites>FETCH-LOGICAL-c545t-678ea7d6b9e102a2be515f6ca734d04b61395fd6116bb4942f37953e88d21f6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,5571,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26935808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>GU, YUE</creatorcontrib><creatorcontrib>XIAO, LINFENG</creatorcontrib><creatorcontrib>MING, YANLIN</creatorcontrib><creatorcontrib>ZHENG, ZHIZHONG</creatorcontrib><creatorcontrib>LI, WENGANG</creatorcontrib><title>Corilagin suppresses cholangiocarcinoma progression through Notch signaling pathway in vitro and in vivo</title><title>International journal of oncology</title><addtitle>Int J Oncol</addtitle><description>Corilagin is a natural plant polyphenol tannic acid with antitumor, anti-inflammatory, and anti-oxidative properties. However, the mechanisms of its actions are largely unknown. Our group reported that corilagin could induce cell inhibition in human breast cancer cell line MCF-7 and human liver hepatocellular carcinoma cell lines HepG2. We report here that corilagin inhibits cholangiocarcinoma (CCA) development through regulating Notch signaling pathway. We found that, in vitro, corilagin inhibited CCA cell proliferation, migration and invasion, promoted CCA cell apoptosis, and inhibited Notch1 and Notch signaling pathway protein expression. Co-immunoprecipitation was used to establish Notch intracellular domain (NICD) interaction with MAML1 and P300 in CCA. Importantly, corilagin reduced Hes1 mRNA level through inhibiting Hes1 promoter activity. In nude mice, corilagin inhibited CCA growth and repressed the expression of Notch1 and mTOR. These results indicate that corilagin may control CCA cell growth by downregulating the expression of Notch1. Therefore, our findings suggest that corilagin may have the potential to become a new therapeutic drug for human CCA.</description><subject>Animals</subject><subject>Antineoplastic Agents - administration &amp; dosage</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Apoptosis</subject><subject>Bile Duct Neoplasms - drug therapy</subject><subject>Bile Duct Neoplasms - genetics</subject><subject>Bile Duct Neoplasms - metabolism</subject><subject>Breast cancer</subject><subject>Cancer therapies</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Cellular signal transduction</subject><subject>Chemotherapy</subject><subject>Chinese medicine</subject><subject>Cholangiocarcinoma</subject><subject>Cholangiocarcinoma - drug therapy</subject><subject>Cholangiocarcinoma - genetics</subject><subject>Cholangiocarcinoma - metabolism</subject><subject>corilagin</subject><subject>Cytotoxicity</subject><subject>Disease Progression</subject><subject>Drug resistance</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Genetic aspects</subject><subject>Glucosides - administration &amp; dosage</subject><subject>Glucosides - pharmacology</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Hydrolyzable Tannins - administration &amp; dosage</subject><subject>Hydrolyzable Tannins - pharmacology</subject><subject>In Vitro Techniques</subject><subject>invasion</subject><subject>Medical prognosis</subject><subject>Messenger RNA</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>migration</subject><subject>Notch signaling pathway</subject><subject>Oxidative stress</subject><subject>proliferation</subject><subject>Properties</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>R&amp;D</subject><subject>Receptors, Notch - metabolism</subject><subject>Research &amp; development</subject><subject>Rodents</subject><subject>Signal Transduction - drug effects</subject><subject>Studies</subject><subject>Tannins</subject><subject>Transcription Factor HES-1 - genetics</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1019-6439</issn><issn>1791-2423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNptkt-L1DAQx4so3g999FUKgj51ze8mL8Kx6Ckc-qLPIU3TNkubqUm7x_33ZtlzvQXJwySZz3xhZr5F8QajDZWKfPQ72BCExYYyTJ8Vl7hWuCKM0Of5jrCqBKPqorhKaYcQ4Rzhl8UFEYpyieRlMWwh-tH0PpRpnefoUnKptAOMJvQerInWB5hMOUfoD1kPoVyGCGs_lN9hsUOZfB_M6ENfzmYZ7s1DmcX2folQmtAeH3t4VbzozJjc68d4Xfz68vnn9mt19-P22_bmrrKc8aUStXSmbkWjHEbEkMZxzDthTU1Zi1gjMFW8awXGommYYqSjteLUSdkSnDl6XXw66s5rM7nWurBEM-o5-snEBw3G6_NM8IPuYa-ZREpwkQXePQpE-L26tOgdrDF3mDRWlFCk6hr9o3ozOu1DB1nMTj5ZfcO4IFIJzDO1-Q-VT-smbyG4zuf_s4L3TwoGZ8ZlSDCuSx57OgerI2gjpBRdd-oQI30whs7G0Adj6IMxMv_26VhO9F8nZODDEUhz3ppvIZ2YrFQxWSFeYSkk_QNFaMGa</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>GU, YUE</creator><creator>XIAO, LINFENG</creator><creator>MING, YANLIN</creator><creator>ZHENG, ZHIZHONG</creator><creator>LI, WENGANG</creator><general>D.A. Spandidos</general><general>Spandidos Publications</general><general>Spandidos Publications UK Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20160501</creationdate><title>Corilagin suppresses cholangiocarcinoma progression through Notch signaling pathway in vitro and in vivo</title><author>GU, YUE ; XIAO, LINFENG ; MING, YANLIN ; ZHENG, ZHIZHONG ; LI, WENGANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-678ea7d6b9e102a2be515f6ca734d04b61395fd6116bb4942f37953e88d21f6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - administration &amp; dosage</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Apoptosis</topic><topic>Bile Duct Neoplasms - drug therapy</topic><topic>Bile Duct Neoplasms - genetics</topic><topic>Bile Duct Neoplasms - metabolism</topic><topic>Breast cancer</topic><topic>Cancer therapies</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Cellular signal transduction</topic><topic>Chemotherapy</topic><topic>Chinese medicine</topic><topic>Cholangiocarcinoma</topic><topic>Cholangiocarcinoma - drug therapy</topic><topic>Cholangiocarcinoma - genetics</topic><topic>Cholangiocarcinoma - metabolism</topic><topic>corilagin</topic><topic>Cytotoxicity</topic><topic>Disease Progression</topic><topic>Drug resistance</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Genetic aspects</topic><topic>Glucosides - administration &amp; dosage</topic><topic>Glucosides - pharmacology</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Hydrolyzable Tannins - administration &amp; dosage</topic><topic>Hydrolyzable Tannins - pharmacology</topic><topic>In Vitro Techniques</topic><topic>invasion</topic><topic>Medical prognosis</topic><topic>Messenger RNA</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>migration</topic><topic>Notch signaling pathway</topic><topic>Oxidative stress</topic><topic>proliferation</topic><topic>Properties</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>R&amp;D</topic><topic>Receptors, Notch - metabolism</topic><topic>Research &amp; development</topic><topic>Rodents</topic><topic>Signal Transduction - drug effects</topic><topic>Studies</topic><topic>Tannins</topic><topic>Transcription Factor HES-1 - genetics</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GU, YUE</creatorcontrib><creatorcontrib>XIAO, LINFENG</creatorcontrib><creatorcontrib>MING, YANLIN</creatorcontrib><creatorcontrib>ZHENG, ZHIZHONG</creatorcontrib><creatorcontrib>LI, WENGANG</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GU, YUE</au><au>XIAO, LINFENG</au><au>MING, YANLIN</au><au>ZHENG, ZHIZHONG</au><au>LI, WENGANG</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corilagin suppresses cholangiocarcinoma progression through Notch signaling pathway in vitro and in vivo</atitle><jtitle>International journal of oncology</jtitle><addtitle>Int J Oncol</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>48</volume><issue>5</issue><spage>1868</spage><epage>1876</epage><pages>1868-1876</pages><issn>1019-6439</issn><eissn>1791-2423</eissn><abstract>Corilagin is a natural plant polyphenol tannic acid with antitumor, anti-inflammatory, and anti-oxidative properties. However, the mechanisms of its actions are largely unknown. Our group reported that corilagin could induce cell inhibition in human breast cancer cell line MCF-7 and human liver hepatocellular carcinoma cell lines HepG2. We report here that corilagin inhibits cholangiocarcinoma (CCA) development through regulating Notch signaling pathway. We found that, in vitro, corilagin inhibited CCA cell proliferation, migration and invasion, promoted CCA cell apoptosis, and inhibited Notch1 and Notch signaling pathway protein expression. Co-immunoprecipitation was used to establish Notch intracellular domain (NICD) interaction with MAML1 and P300 in CCA. Importantly, corilagin reduced Hes1 mRNA level through inhibiting Hes1 promoter activity. In nude mice, corilagin inhibited CCA growth and repressed the expression of Notch1 and mTOR. These results indicate that corilagin may control CCA cell growth by downregulating the expression of Notch1. Therefore, our findings suggest that corilagin may have the potential to become a new therapeutic drug for human CCA.</abstract><cop>Greece</cop><pub>D.A. Spandidos</pub><pmid>26935808</pmid><doi>10.3892/ijo.2016.3413</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1019-6439
ispartof International journal of oncology, 2016-05, Vol.48 (5), p.1868-1876
issn 1019-6439
1791-2423
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4809656
source Spandidos Publications Journals; MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Antineoplastic Agents - administration & dosage
Antineoplastic Agents - pharmacology
Apoptosis
Bile Duct Neoplasms - drug therapy
Bile Duct Neoplasms - genetics
Bile Duct Neoplasms - metabolism
Breast cancer
Cancer therapies
Cell growth
Cell Line, Tumor
Cell Movement - drug effects
Cell Proliferation - drug effects
Cell Survival - drug effects
Cellular signal transduction
Chemotherapy
Chinese medicine
Cholangiocarcinoma
Cholangiocarcinoma - drug therapy
Cholangiocarcinoma - genetics
Cholangiocarcinoma - metabolism
corilagin
Cytotoxicity
Disease Progression
Drug resistance
Gene Expression Regulation, Neoplastic - drug effects
Genetic aspects
Glucosides - administration & dosage
Glucosides - pharmacology
Health aspects
Humans
Hydrolyzable Tannins - administration & dosage
Hydrolyzable Tannins - pharmacology
In Vitro Techniques
invasion
Medical prognosis
Messenger RNA
Mice
Mice, Nude
migration
Notch signaling pathway
Oxidative stress
proliferation
Properties
Protein expression
Proteins
R&D
Receptors, Notch - metabolism
Research & development
Rodents
Signal Transduction - drug effects
Studies
Tannins
Transcription Factor HES-1 - genetics
Xenograft Model Antitumor Assays
title Corilagin suppresses cholangiocarcinoma progression through Notch signaling pathway in vitro and in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A37%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corilagin%20suppresses%20cholangiocarcinoma%20progression%20through%20Notch%20signaling%20pathway%20in%20vitro%20and%20in%20vivo&rft.jtitle=International%20journal%20of%20oncology&rft.au=GU,%20YUE&rft.date=2016-05-01&rft.volume=48&rft.issue=5&rft.spage=1868&rft.epage=1876&rft.pages=1868-1876&rft.issn=1019-6439&rft.eissn=1791-2423&rft_id=info:doi/10.3892/ijo.2016.3413&rft_dat=%3Cgale_pubme%3EA456289615%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932309770&rft_id=info:pmid/26935808&rft_galeid=A456289615&rfr_iscdi=true