An Efficient Approach to Screening Epigenome-Wide Data
Screening cytosine-phosphate-guanine dinucleotide (CpG) DNA methylation sites in association with some covariate(s) is desired due to high dimensionality. We incorporate surrogate variable analyses (SVAs) into (ordinary or robust) linear regressions and utilize training and testing samples for neste...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2016-01, Vol.2016 (2016), p.1-16 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | 2016 |
container_start_page | 1 |
container_title | BioMed research international |
container_volume | 2016 |
creator | Zhang, Hongmei Lockett, Gabrielle A. Tong, Xin Ray, Meredith A. Karmaus, Wilfried J. |
description | Screening cytosine-phosphate-guanine dinucleotide (CpG) DNA methylation sites in association with some covariate(s) is desired due to high dimensionality. We incorporate surrogate variable analyses (SVAs) into (ordinary or robust) linear regressions and utilize training and testing samples for nested validation to screen CpG sites. SVA is to account for variations in the methylation not explained by the specified covariate(s) and adjust for confounding effects. To make it easier to users, this screening method is built into a user-friendly R package, ttScreening, with efficient algorithms implemented. Various simulations were implemented to examine the robustness and sensitivity of the method compared to the classical approaches controlling for multiple testing: the false discovery rates-based (FDR-based) and the Bonferroni-based methods. The proposed approach in general performs better and has the potential to control both types I and II errors. We applied ttScreening to 383,998 CpG sites in association with maternal smoking, one of the leading factors for cancer risk. |
doi_str_mv | 10.1155/2016/2615348 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4808532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A520714665</galeid><sourcerecordid>A520714665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-c0634c2c8fa3f7cb72f88480592271363505bb40f48930f11bf0ae13676775b3</originalsourceid><addsrcrecordid>eNqNkctrGzEQxkVIaUKaW89loZdAuo1G770EjOM-INBDAz0KrSzZCmtpo10n5L-PjF3ncYouI5gf33wzH0KfAX8H4PyCYBAXRACnTB2gY0KB1QIYHO7_lB6h02G4xeUpELgRH9ERkZiyhqhjJCaxmnkfbHBxrCZ9n5Oxy2pM1V-bnYshLqpZHxYuppWr_4W5q67MaD6hD950gzvd1RN082N2M_1VX__5-Xs6ua4tp2SsLRaUWWKVN9RL20rilWIK84YQCVRQjnnbMuyZaij2AK3HxpWGFFLylp6gy61sv25Xbm6Lx2w63eewMvlRJxP0604MS71I97rMUMVBETjbCeR0t3bDqFdhsK7rTHRpPWiQxQwVXL0HlUoCASUK-vUNepvWOZZDbCiBedmRPFML0zkdok_Fot2I6gknWAITghfq25ayOQ1Ddn6_HWC9yVhvMta7jAv-5eVF9vD_RAtwvgWWIc7NQ3innCuM8-YF3UgARZ8AbFCzRQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1776058482</pqid></control><display><type>article</type><title>An Efficient Approach to Screening Epigenome-Wide Data</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zhang, Hongmei ; Lockett, Gabrielle A. ; Tong, Xin ; Ray, Meredith A. ; Karmaus, Wilfried J.</creator><contributor>Zhai, Weiwei</contributor><creatorcontrib>Zhang, Hongmei ; Lockett, Gabrielle A. ; Tong, Xin ; Ray, Meredith A. ; Karmaus, Wilfried J. ; Zhai, Weiwei</creatorcontrib><description>Screening cytosine-phosphate-guanine dinucleotide (CpG) DNA methylation sites in association with some covariate(s) is desired due to high dimensionality. We incorporate surrogate variable analyses (SVAs) into (ordinary or robust) linear regressions and utilize training and testing samples for nested validation to screen CpG sites. SVA is to account for variations in the methylation not explained by the specified covariate(s) and adjust for confounding effects. To make it easier to users, this screening method is built into a user-friendly R package, ttScreening, with efficient algorithms implemented. Various simulations were implemented to examine the robustness and sensitivity of the method compared to the classical approaches controlling for multiple testing: the false discovery rates-based (FDR-based) and the Bonferroni-based methods. The proposed approach in general performs better and has the potential to control both types I and II errors. We applied ttScreening to 383,998 CpG sites in association with maternal smoking, one of the leading factors for cancer risk.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2016/2615348</identifier><identifier>PMID: 27034928</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Comparative analysis ; Computational Biology ; CpG Islands - genetics ; DNA methylation ; DNA Methylation - genetics ; Epidemiology ; Epigenetics ; Epigenomics - statistics & numerical data ; Genome, Human ; Health aspects ; Humans ; Linear Models ; Medical research ; Methods ; Methylation ; Neoplasms - genetics ; Oligonucleotide Array Sequence Analysis ; Public health ; Pyrimidines ; Reproducibility ; Risk Factors ; Variables</subject><ispartof>BioMed research international, 2016-01, Vol.2016 (2016), p.1-16</ispartof><rights>Copyright © 2016 Meredith A. Ray et al.</rights><rights>COPYRIGHT 2016 John Wiley & Sons, Inc.</rights><rights>Copyright © 2016 Meredith A. Ray et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2016 Meredith A. Ray et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-c0634c2c8fa3f7cb72f88480592271363505bb40f48930f11bf0ae13676775b3</citedby><cites>FETCH-LOGICAL-c532t-c0634c2c8fa3f7cb72f88480592271363505bb40f48930f11bf0ae13676775b3</cites><orcidid>0000-0001-5312-3774 ; 0000-0003-3557-0364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808532/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808532/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27034928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhai, Weiwei</contributor><creatorcontrib>Zhang, Hongmei</creatorcontrib><creatorcontrib>Lockett, Gabrielle A.</creatorcontrib><creatorcontrib>Tong, Xin</creatorcontrib><creatorcontrib>Ray, Meredith A.</creatorcontrib><creatorcontrib>Karmaus, Wilfried J.</creatorcontrib><title>An Efficient Approach to Screening Epigenome-Wide Data</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Screening cytosine-phosphate-guanine dinucleotide (CpG) DNA methylation sites in association with some covariate(s) is desired due to high dimensionality. We incorporate surrogate variable analyses (SVAs) into (ordinary or robust) linear regressions and utilize training and testing samples for nested validation to screen CpG sites. SVA is to account for variations in the methylation not explained by the specified covariate(s) and adjust for confounding effects. To make it easier to users, this screening method is built into a user-friendly R package, ttScreening, with efficient algorithms implemented. Various simulations were implemented to examine the robustness and sensitivity of the method compared to the classical approaches controlling for multiple testing: the false discovery rates-based (FDR-based) and the Bonferroni-based methods. The proposed approach in general performs better and has the potential to control both types I and II errors. We applied ttScreening to 383,998 CpG sites in association with maternal smoking, one of the leading factors for cancer risk.</description><subject>Algorithms</subject><subject>Comparative analysis</subject><subject>Computational Biology</subject><subject>CpG Islands - genetics</subject><subject>DNA methylation</subject><subject>DNA Methylation - genetics</subject><subject>Epidemiology</subject><subject>Epigenetics</subject><subject>Epigenomics - statistics & numerical data</subject><subject>Genome, Human</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Medical research</subject><subject>Methods</subject><subject>Methylation</subject><subject>Neoplasms - genetics</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Public health</subject><subject>Pyrimidines</subject><subject>Reproducibility</subject><subject>Risk Factors</subject><subject>Variables</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkctrGzEQxkVIaUKaW89loZdAuo1G770EjOM-INBDAz0KrSzZCmtpo10n5L-PjF3ncYouI5gf33wzH0KfAX8H4PyCYBAXRACnTB2gY0KB1QIYHO7_lB6h02G4xeUpELgRH9ERkZiyhqhjJCaxmnkfbHBxrCZ9n5Oxy2pM1V-bnYshLqpZHxYuppWr_4W5q67MaD6hD950gzvd1RN082N2M_1VX__5-Xs6ua4tp2SsLRaUWWKVN9RL20rilWIK84YQCVRQjnnbMuyZaij2AK3HxpWGFFLylp6gy61sv25Xbm6Lx2w63eewMvlRJxP0604MS71I97rMUMVBETjbCeR0t3bDqFdhsK7rTHRpPWiQxQwVXL0HlUoCASUK-vUNepvWOZZDbCiBedmRPFML0zkdok_Fot2I6gknWAITghfq25ayOQ1Ddn6_HWC9yVhvMta7jAv-5eVF9vD_RAtwvgWWIc7NQ3innCuM8-YF3UgARZ8AbFCzRQ</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Zhang, Hongmei</creator><creator>Lockett, Gabrielle A.</creator><creator>Tong, Xin</creator><creator>Ray, Meredith A.</creator><creator>Karmaus, Wilfried J.</creator><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5312-3774</orcidid><orcidid>https://orcid.org/0000-0003-3557-0364</orcidid></search><sort><creationdate>20160101</creationdate><title>An Efficient Approach to Screening Epigenome-Wide Data</title><author>Zhang, Hongmei ; Lockett, Gabrielle A. ; Tong, Xin ; Ray, Meredith A. ; Karmaus, Wilfried J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-c0634c2c8fa3f7cb72f88480592271363505bb40f48930f11bf0ae13676775b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Comparative analysis</topic><topic>Computational Biology</topic><topic>CpG Islands - genetics</topic><topic>DNA methylation</topic><topic>DNA Methylation - genetics</topic><topic>Epidemiology</topic><topic>Epigenetics</topic><topic>Epigenomics - statistics & numerical data</topic><topic>Genome, Human</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Medical research</topic><topic>Methods</topic><topic>Methylation</topic><topic>Neoplasms - genetics</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Public health</topic><topic>Pyrimidines</topic><topic>Reproducibility</topic><topic>Risk Factors</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hongmei</creatorcontrib><creatorcontrib>Lockett, Gabrielle A.</creatorcontrib><creatorcontrib>Tong, Xin</creatorcontrib><creatorcontrib>Ray, Meredith A.</creatorcontrib><creatorcontrib>Karmaus, Wilfried J.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hongmei</au><au>Lockett, Gabrielle A.</au><au>Tong, Xin</au><au>Ray, Meredith A.</au><au>Karmaus, Wilfried J.</au><au>Zhai, Weiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Approach to Screening Epigenome-Wide Data</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Screening cytosine-phosphate-guanine dinucleotide (CpG) DNA methylation sites in association with some covariate(s) is desired due to high dimensionality. We incorporate surrogate variable analyses (SVAs) into (ordinary or robust) linear regressions and utilize training and testing samples for nested validation to screen CpG sites. SVA is to account for variations in the methylation not explained by the specified covariate(s) and adjust for confounding effects. To make it easier to users, this screening method is built into a user-friendly R package, ttScreening, with efficient algorithms implemented. Various simulations were implemented to examine the robustness and sensitivity of the method compared to the classical approaches controlling for multiple testing: the false discovery rates-based (FDR-based) and the Bonferroni-based methods. The proposed approach in general performs better and has the potential to control both types I and II errors. We applied ttScreening to 383,998 CpG sites in association with maternal smoking, one of the leading factors for cancer risk.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>27034928</pmid><doi>10.1155/2016/2615348</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5312-3774</orcidid><orcidid>https://orcid.org/0000-0003-3557-0364</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2016-01, Vol.2016 (2016), p.1-16 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4808532 |
source | MEDLINE; PubMed Central Open Access; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Comparative analysis Computational Biology CpG Islands - genetics DNA methylation DNA Methylation - genetics Epidemiology Epigenetics Epigenomics - statistics & numerical data Genome, Human Health aspects Humans Linear Models Medical research Methods Methylation Neoplasms - genetics Oligonucleotide Array Sequence Analysis Public health Pyrimidines Reproducibility Risk Factors Variables |
title | An Efficient Approach to Screening Epigenome-Wide Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Approach%20to%20Screening%20Epigenome-Wide%20Data&rft.jtitle=BioMed%20research%20international&rft.au=Zhang,%20Hongmei&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2016/2615348&rft_dat=%3Cgale_pubme%3EA520714665%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1776058482&rft_id=info:pmid/27034928&rft_galeid=A520714665&rfr_iscdi=true |