Structural Basis for the Inhibition of Voltage-gated Sodium Channels by Conotoxin μO§-GVIIJ

Cone snail toxins are well known blockers of voltage-gated sodium channels, a property that is of broad interest in biology and therapeutically in treating neuropathic pain and neurological disorders. Although most conotoxin channel blockers function by direct binding to a channel and disrupting its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2016-03, Vol.291 (13), p.7205-7220
Hauptverfasser: Green, Brad R., Gajewiak, Joanna, Chhabra, Sandeep, Skalicky, Jack J., Zhang, Min-Min, Rivier, Jean E., Bulaj, Grzegorz, Olivera, Baldomero M., Yoshikami, Doju, Norton, Raymond S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7220
container_issue 13
container_start_page 7205
container_title The Journal of biological chemistry
container_volume 291
creator Green, Brad R.
Gajewiak, Joanna
Chhabra, Sandeep
Skalicky, Jack J.
Zhang, Min-Min
Rivier, Jean E.
Bulaj, Grzegorz
Olivera, Baldomero M.
Yoshikami, Doju
Norton, Raymond S.
description Cone snail toxins are well known blockers of voltage-gated sodium channels, a property that is of broad interest in biology and therapeutically in treating neuropathic pain and neurological disorders. Although most conotoxin channel blockers function by direct binding to a channel and disrupting its normal ion movement, conotoxin μO§-GVIIJ channel blocking is unique, using both favorable binding interactions with the channel and a direct tether via an intermolecular disulfide bond. Disulfide exchange is possible because conotoxin μO§-GVIIJ contains an S-cysteinylated Cys-24 residue that is capable of exchanging with a free cysteine thiol on the channel surface. Here, we present the solution structure of an analog of μO§-GVIIJ (GVIIJ[C24S]) and the results of structure-activity studies with synthetic μO§-GVIIJ variants. GVIIJ[C24S] adopts an inhibitor cystine knot structure, with two antiparallel β-strands stabilized by three disulfide bridges. The loop region linking the β-strands (loop 4) presents residue 24 in a configuration where it could bind to the proposed free cysteine of the channel (Cys-910, rat NaV1.2 numbering; at site 8). The structure-activity study shows that three residues (Lys-12, Arg-14, and Tyr-16) located in loop 2 and spatially close to residue 24 were also important for functional activity. We propose that the interaction of μO§-GVIIJ with the channel depends on not only disulfide tethering via Cys-24 to a free cysteine at site 8 on the channel but also the participation of key residues of μO§-GVIIJ on a distinct surface of the peptide.
doi_str_mv 10.1074/jbc.M115.697672
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4807300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820429709</els_id><sourcerecordid>26817840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3582-b745ebe84a7a41d55879db7b885d15b0d825747482e1546afc855a33f20ba19f3</originalsourceid><addsrcrecordid>eNp1kDtOAzEQhi0EIuFR0yFfYIO9a8feBgkiHkEgigCiQZZfmzhKbGQ7CE7EJag4AGdiowCCgmmmmH--0XwA7GHUw4iRg6nSvSuMaa9fsz4r10AXI14VFcX366CLUImLuqS8A7ZSmqK2SI03Qafsc8w4QV3wMMpxofMiyhk8lskl2IQI88TCoZ845bILHoYG3oVZlmNbjGW2Bo6CcYs5HEyk93aWoHqBg-BDDs_Ow4-36_fX4uxuOLzYARuNnCW7-9W3we3pyc3gvLi8PhsOji4LXVFeFooRapXlRDJJsKGUs9oopjinBlOFDC8pI4zw0mJK-rLRnFJZVU2JlMR1U22DwxX3caHm1mjrc_uQeIxuLuOLCNKJvxPvJmIcngThiFUItYCDFUDHkFK0zc8uRmJpWrSmxdK0WJluN_Z_n_zJf6ttA_Uq0AqyT85GkbSzXlvjotVZmOD-hX8CVPiPmw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural Basis for the Inhibition of Voltage-gated Sodium Channels by Conotoxin μO§-GVIIJ</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Green, Brad R. ; Gajewiak, Joanna ; Chhabra, Sandeep ; Skalicky, Jack J. ; Zhang, Min-Min ; Rivier, Jean E. ; Bulaj, Grzegorz ; Olivera, Baldomero M. ; Yoshikami, Doju ; Norton, Raymond S.</creator><creatorcontrib>Green, Brad R. ; Gajewiak, Joanna ; Chhabra, Sandeep ; Skalicky, Jack J. ; Zhang, Min-Min ; Rivier, Jean E. ; Bulaj, Grzegorz ; Olivera, Baldomero M. ; Yoshikami, Doju ; Norton, Raymond S.</creatorcontrib><description>Cone snail toxins are well known blockers of voltage-gated sodium channels, a property that is of broad interest in biology and therapeutically in treating neuropathic pain and neurological disorders. Although most conotoxin channel blockers function by direct binding to a channel and disrupting its normal ion movement, conotoxin μO§-GVIIJ channel blocking is unique, using both favorable binding interactions with the channel and a direct tether via an intermolecular disulfide bond. Disulfide exchange is possible because conotoxin μO§-GVIIJ contains an S-cysteinylated Cys-24 residue that is capable of exchanging with a free cysteine thiol on the channel surface. Here, we present the solution structure of an analog of μO§-GVIIJ (GVIIJ[C24S]) and the results of structure-activity studies with synthetic μO§-GVIIJ variants. GVIIJ[C24S] adopts an inhibitor cystine knot structure, with two antiparallel β-strands stabilized by three disulfide bridges. The loop region linking the β-strands (loop 4) presents residue 24 in a configuration where it could bind to the proposed free cysteine of the channel (Cys-910, rat NaV1.2 numbering; at site 8). The structure-activity study shows that three residues (Lys-12, Arg-14, and Tyr-16) located in loop 2 and spatially close to residue 24 were also important for functional activity. We propose that the interaction of μO§-GVIIJ with the channel depends on not only disulfide tethering via Cys-24 to a free cysteine at site 8 on the channel but also the participation of key residues of μO§-GVIIJ on a distinct surface of the peptide.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M115.697672</identifier><identifier>PMID: 26817840</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Animals ; Binding Sites ; conotoxin ; Conotoxins - chemical synthesis ; Conotoxins - chemistry ; Crystallography, X-Ray ; cysteine ; disulfide ; Disulfides - chemistry ; Gene Expression ; high performance liquid chromatography (HPLC) ; Models, Molecular ; Molecular Sequence Data ; Muscle Proteins - chemistry ; Muscle Proteins - genetics ; Muscle Proteins - metabolism ; Mutation ; NAV1.2 Voltage-Gated Sodium Channel - chemistry ; NAV1.2 Voltage-Gated Sodium Channel - genetics ; NAV1.2 Voltage-Gated Sodium Channel - metabolism ; nuclear magnetic resonance (NMR) ; peptide chemical synthesis ; Protein Binding ; Protein Structure and Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rats ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Snails - chemistry ; sodium channel ; Sodium Channel Blockers - chemical synthesis ; Sodium Channel Blockers - chemistry ; Sodium Channels - chemistry ; Sodium Channels - genetics ; Sodium Channels - metabolism ; Solid-Phase Synthesis Techniques ; Structure-Activity Relationship ; structure-activity relationship studies ; two-electrode voltage clamp electrophysiology</subject><ispartof>The Journal of biological chemistry, 2016-03, Vol.291 (13), p.7205-7220</ispartof><rights>2016 © 2016 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc. 2016 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3582-b745ebe84a7a41d55879db7b885d15b0d825747482e1546afc855a33f20ba19f3</citedby><cites>FETCH-LOGICAL-c3582-b745ebe84a7a41d55879db7b885d15b0d825747482e1546afc855a33f20ba19f3</cites><orcidid>0000-0001-8893-0584 ; 0000-0003-4556-1410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4807300/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4807300/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26817840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Green, Brad R.</creatorcontrib><creatorcontrib>Gajewiak, Joanna</creatorcontrib><creatorcontrib>Chhabra, Sandeep</creatorcontrib><creatorcontrib>Skalicky, Jack J.</creatorcontrib><creatorcontrib>Zhang, Min-Min</creatorcontrib><creatorcontrib>Rivier, Jean E.</creatorcontrib><creatorcontrib>Bulaj, Grzegorz</creatorcontrib><creatorcontrib>Olivera, Baldomero M.</creatorcontrib><creatorcontrib>Yoshikami, Doju</creatorcontrib><creatorcontrib>Norton, Raymond S.</creatorcontrib><title>Structural Basis for the Inhibition of Voltage-gated Sodium Channels by Conotoxin μO§-GVIIJ</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Cone snail toxins are well known blockers of voltage-gated sodium channels, a property that is of broad interest in biology and therapeutically in treating neuropathic pain and neurological disorders. Although most conotoxin channel blockers function by direct binding to a channel and disrupting its normal ion movement, conotoxin μO§-GVIIJ channel blocking is unique, using both favorable binding interactions with the channel and a direct tether via an intermolecular disulfide bond. Disulfide exchange is possible because conotoxin μO§-GVIIJ contains an S-cysteinylated Cys-24 residue that is capable of exchanging with a free cysteine thiol on the channel surface. Here, we present the solution structure of an analog of μO§-GVIIJ (GVIIJ[C24S]) and the results of structure-activity studies with synthetic μO§-GVIIJ variants. GVIIJ[C24S] adopts an inhibitor cystine knot structure, with two antiparallel β-strands stabilized by three disulfide bridges. The loop region linking the β-strands (loop 4) presents residue 24 in a configuration where it could bind to the proposed free cysteine of the channel (Cys-910, rat NaV1.2 numbering; at site 8). The structure-activity study shows that three residues (Lys-12, Arg-14, and Tyr-16) located in loop 2 and spatially close to residue 24 were also important for functional activity. We propose that the interaction of μO§-GVIIJ with the channel depends on not only disulfide tethering via Cys-24 to a free cysteine at site 8 on the channel but also the participation of key residues of μO§-GVIIJ on a distinct surface of the peptide.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>conotoxin</subject><subject>Conotoxins - chemical synthesis</subject><subject>Conotoxins - chemistry</subject><subject>Crystallography, X-Ray</subject><subject>cysteine</subject><subject>disulfide</subject><subject>Disulfides - chemistry</subject><subject>Gene Expression</subject><subject>high performance liquid chromatography (HPLC)</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Muscle Proteins - chemistry</subject><subject>Muscle Proteins - genetics</subject><subject>Muscle Proteins - metabolism</subject><subject>Mutation</subject><subject>NAV1.2 Voltage-Gated Sodium Channel - chemistry</subject><subject>NAV1.2 Voltage-Gated Sodium Channel - genetics</subject><subject>NAV1.2 Voltage-Gated Sodium Channel - metabolism</subject><subject>nuclear magnetic resonance (NMR)</subject><subject>peptide chemical synthesis</subject><subject>Protein Binding</subject><subject>Protein Structure and Folding</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Rats</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Snails - chemistry</subject><subject>sodium channel</subject><subject>Sodium Channel Blockers - chemical synthesis</subject><subject>Sodium Channel Blockers - chemistry</subject><subject>Sodium Channels - chemistry</subject><subject>Sodium Channels - genetics</subject><subject>Sodium Channels - metabolism</subject><subject>Solid-Phase Synthesis Techniques</subject><subject>Structure-Activity Relationship</subject><subject>structure-activity relationship studies</subject><subject>two-electrode voltage clamp electrophysiology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kDtOAzEQhi0EIuFR0yFfYIO9a8feBgkiHkEgigCiQZZfmzhKbGQ7CE7EJag4AGdiowCCgmmmmH--0XwA7GHUw4iRg6nSvSuMaa9fsz4r10AXI14VFcX366CLUImLuqS8A7ZSmqK2SI03Qafsc8w4QV3wMMpxofMiyhk8lskl2IQI88TCoZ845bILHoYG3oVZlmNbjGW2Bo6CcYs5HEyk93aWoHqBg-BDDs_Ow4-36_fX4uxuOLzYARuNnCW7-9W3we3pyc3gvLi8PhsOji4LXVFeFooRapXlRDJJsKGUs9oopjinBlOFDC8pI4zw0mJK-rLRnFJZVU2JlMR1U22DwxX3caHm1mjrc_uQeIxuLuOLCNKJvxPvJmIcngThiFUItYCDFUDHkFK0zc8uRmJpWrSmxdK0WJluN_Z_n_zJf6ttA_Uq0AqyT85GkbSzXlvjotVZmOD-hX8CVPiPmw</recordid><startdate>20160325</startdate><enddate>20160325</enddate><creator>Green, Brad R.</creator><creator>Gajewiak, Joanna</creator><creator>Chhabra, Sandeep</creator><creator>Skalicky, Jack J.</creator><creator>Zhang, Min-Min</creator><creator>Rivier, Jean E.</creator><creator>Bulaj, Grzegorz</creator><creator>Olivera, Baldomero M.</creator><creator>Yoshikami, Doju</creator><creator>Norton, Raymond S.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8893-0584</orcidid><orcidid>https://orcid.org/0000-0003-4556-1410</orcidid></search><sort><creationdate>20160325</creationdate><title>Structural Basis for the Inhibition of Voltage-gated Sodium Channels by Conotoxin μO§-GVIIJ</title><author>Green, Brad R. ; Gajewiak, Joanna ; Chhabra, Sandeep ; Skalicky, Jack J. ; Zhang, Min-Min ; Rivier, Jean E. ; Bulaj, Grzegorz ; Olivera, Baldomero M. ; Yoshikami, Doju ; Norton, Raymond S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3582-b745ebe84a7a41d55879db7b885d15b0d825747482e1546afc855a33f20ba19f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>conotoxin</topic><topic>Conotoxins - chemical synthesis</topic><topic>Conotoxins - chemistry</topic><topic>Crystallography, X-Ray</topic><topic>cysteine</topic><topic>disulfide</topic><topic>Disulfides - chemistry</topic><topic>Gene Expression</topic><topic>high performance liquid chromatography (HPLC)</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Muscle Proteins - chemistry</topic><topic>Muscle Proteins - genetics</topic><topic>Muscle Proteins - metabolism</topic><topic>Mutation</topic><topic>NAV1.2 Voltage-Gated Sodium Channel - chemistry</topic><topic>NAV1.2 Voltage-Gated Sodium Channel - genetics</topic><topic>NAV1.2 Voltage-Gated Sodium Channel - metabolism</topic><topic>nuclear magnetic resonance (NMR)</topic><topic>peptide chemical synthesis</topic><topic>Protein Binding</topic><topic>Protein Structure and Folding</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Rats</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Snails - chemistry</topic><topic>sodium channel</topic><topic>Sodium Channel Blockers - chemical synthesis</topic><topic>Sodium Channel Blockers - chemistry</topic><topic>Sodium Channels - chemistry</topic><topic>Sodium Channels - genetics</topic><topic>Sodium Channels - metabolism</topic><topic>Solid-Phase Synthesis Techniques</topic><topic>Structure-Activity Relationship</topic><topic>structure-activity relationship studies</topic><topic>two-electrode voltage clamp electrophysiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Green, Brad R.</creatorcontrib><creatorcontrib>Gajewiak, Joanna</creatorcontrib><creatorcontrib>Chhabra, Sandeep</creatorcontrib><creatorcontrib>Skalicky, Jack J.</creatorcontrib><creatorcontrib>Zhang, Min-Min</creatorcontrib><creatorcontrib>Rivier, Jean E.</creatorcontrib><creatorcontrib>Bulaj, Grzegorz</creatorcontrib><creatorcontrib>Olivera, Baldomero M.</creatorcontrib><creatorcontrib>Yoshikami, Doju</creatorcontrib><creatorcontrib>Norton, Raymond S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Green, Brad R.</au><au>Gajewiak, Joanna</au><au>Chhabra, Sandeep</au><au>Skalicky, Jack J.</au><au>Zhang, Min-Min</au><au>Rivier, Jean E.</au><au>Bulaj, Grzegorz</au><au>Olivera, Baldomero M.</au><au>Yoshikami, Doju</au><au>Norton, Raymond S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Basis for the Inhibition of Voltage-gated Sodium Channels by Conotoxin μO§-GVIIJ</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2016-03-25</date><risdate>2016</risdate><volume>291</volume><issue>13</issue><spage>7205</spage><epage>7220</epage><pages>7205-7220</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Cone snail toxins are well known blockers of voltage-gated sodium channels, a property that is of broad interest in biology and therapeutically in treating neuropathic pain and neurological disorders. Although most conotoxin channel blockers function by direct binding to a channel and disrupting its normal ion movement, conotoxin μO§-GVIIJ channel blocking is unique, using both favorable binding interactions with the channel and a direct tether via an intermolecular disulfide bond. Disulfide exchange is possible because conotoxin μO§-GVIIJ contains an S-cysteinylated Cys-24 residue that is capable of exchanging with a free cysteine thiol on the channel surface. Here, we present the solution structure of an analog of μO§-GVIIJ (GVIIJ[C24S]) and the results of structure-activity studies with synthetic μO§-GVIIJ variants. GVIIJ[C24S] adopts an inhibitor cystine knot structure, with two antiparallel β-strands stabilized by three disulfide bridges. The loop region linking the β-strands (loop 4) presents residue 24 in a configuration where it could bind to the proposed free cysteine of the channel (Cys-910, rat NaV1.2 numbering; at site 8). The structure-activity study shows that three residues (Lys-12, Arg-14, and Tyr-16) located in loop 2 and spatially close to residue 24 were also important for functional activity. We propose that the interaction of μO§-GVIIJ with the channel depends on not only disulfide tethering via Cys-24 to a free cysteine at site 8 on the channel but also the participation of key residues of μO§-GVIIJ on a distinct surface of the peptide.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26817840</pmid><doi>10.1074/jbc.M115.697672</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8893-0584</orcidid><orcidid>https://orcid.org/0000-0003-4556-1410</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2016-03, Vol.291 (13), p.7205-7220
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4807300
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Amino Acid Sequence
Animals
Binding Sites
conotoxin
Conotoxins - chemical synthesis
Conotoxins - chemistry
Crystallography, X-Ray
cysteine
disulfide
Disulfides - chemistry
Gene Expression
high performance liquid chromatography (HPLC)
Models, Molecular
Molecular Sequence Data
Muscle Proteins - chemistry
Muscle Proteins - genetics
Muscle Proteins - metabolism
Mutation
NAV1.2 Voltage-Gated Sodium Channel - chemistry
NAV1.2 Voltage-Gated Sodium Channel - genetics
NAV1.2 Voltage-Gated Sodium Channel - metabolism
nuclear magnetic resonance (NMR)
peptide chemical synthesis
Protein Binding
Protein Structure and Folding
Protein Structure, Secondary
Protein Structure, Tertiary
Rats
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Snails - chemistry
sodium channel
Sodium Channel Blockers - chemical synthesis
Sodium Channel Blockers - chemistry
Sodium Channels - chemistry
Sodium Channels - genetics
Sodium Channels - metabolism
Solid-Phase Synthesis Techniques
Structure-Activity Relationship
structure-activity relationship studies
two-electrode voltage clamp electrophysiology
title Structural Basis for the Inhibition of Voltage-gated Sodium Channels by Conotoxin μO§-GVIIJ
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Basis%20for%20the%20Inhibition%20of%20Voltage-gated%20Sodium%20Channels%20by%20Conotoxin%20%CE%BCO%C2%A7-GVIIJ&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Green,%20Brad%20R.&rft.date=2016-03-25&rft.volume=291&rft.issue=13&rft.spage=7205&rft.epage=7220&rft.pages=7205-7220&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M115.697672&rft_dat=%3Cpubmed_cross%3E26817840%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/26817840&rft_els_id=S0021925820429709&rfr_iscdi=true