Structural Analysis of β-Fructofuranosidase from Xanthophyllomyces dendrorhous Reveals Unique Features and the Crucial Role of N-Glycosylation in Oligomerization and Activity

Xanthophyllomyces dendrorhous β-fructofuranosidase (XdINV)is a highly glycosylated dimeric enzyme that hydrolyzes sucrose and releases fructose from various fructooligosaccharides (FOS) and fructans. It also catalyzes the synthesis of FOS, prebiotics that stimulate the growth of beneficial bacteria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2016-03, Vol.291 (13), p.6843-6857
Hauptverfasser: Ramírez-Escudero, Mercedes, Gimeno-Pérez, María, González, Beatriz, Linde, Dolores, Merdzo, Zoran, Fernández-Lobato, María, Sanz-Aparicio, Julia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6857
container_issue 13
container_start_page 6843
container_title The Journal of biological chemistry
container_volume 291
creator Ramírez-Escudero, Mercedes
Gimeno-Pérez, María
González, Beatriz
Linde, Dolores
Merdzo, Zoran
Fernández-Lobato, María
Sanz-Aparicio, Julia
description Xanthophyllomyces dendrorhous β-fructofuranosidase (XdINV)is a highly glycosylated dimeric enzyme that hydrolyzes sucrose and releases fructose from various fructooligosaccharides (FOS) and fructans. It also catalyzes the synthesis of FOS, prebiotics that stimulate the growth of beneficial bacteria in human gut. In contrast to most fructosylating enzymes, XdINV produces neo-FOS, which makes it an interesting biotechnology target. We present here its three-dimensional structure, which shows the expected bimodular arrangement and also a long extension of its C terminus that together with an N-linked glycan mediate the formation of an unusual dimer. The two active sites of the dimer are connected by a long crevice, which might indicate its potential ability to accommodate branched fructans. This arrangement could be representative of a group of GH32 yeast enzymes having the traits observed in XdINV. The inactive D80A mutant was used to obtain complexes with relevant substrates and products, with their crystals structures showing at least four binding subsites at each active site. Moreover, two different positions are observed from subsite +2 depending on the substrate, and thus, a flexible loop (Glu-334–His-343) is essential in binding sucrose and β(2–1)-linked oligosaccharides. Conversely, β(2–6) and neo-type substrates are accommodated mainly by stacking to Trp-105, explaining the production of neokestose and the efficient fructosylating activity of XdINV on α-glucosides. The role of relevant residues has been investigated by mutagenesis and kinetics measurements, and a model for the transfructosylating reaction has been proposed. The plasticity of its active site makes XdINV a valuable and flexible biocatalyst to produce novel bioconjugates.
doi_str_mv 10.1074/jbc.M115.708495
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4807271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820429412</els_id><sourcerecordid>S0021925820429412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3585-fb8daba896183c866948d160cda2ac8ec9d5b8471cca7cad86d30d6d804011463</originalsourceid><addsrcrecordid>eNp1kd9qFDEYxYModq1eeyd5gdkm8zdzIyyLW4VqoVroXcgk33RSMsmaZBbGlxJ8EJ_JDKNFL8xNIOd8v0O-g9BrSraUNOXFQye3Hymttg1hZVs9QRtKWJEVFb17ijaE5DRr84qdoRchPJB0ypY-R2d5zfKirIsN-v45-knGyQuDd1aYOeiAXY9__sgOi-D6JFkXtBIBcO_diO-EjYM7DrMxbpwlBKzAKu_84KaAb-AEwgR8a_XXCfABRIInj7AKxwHwPlF1CrtxBpagT9mlmaULsxFRO4u1xddG37sRvP62Pi2jOxn1Scf5JXrWJzy8-n2fo9vDuy_799nV9eWH_e4qk0XFqqzvmBKdYG1NWSFZXbclU7QmUolcSAayVVXHyoZKKRopFKtVQVStGCkJpWkz5-jtyj1O3QhKgo1pRfzo9Sj8zJ3Q_F_F6oHfuxMvGWnyhibAxQqQ3oXgoX-cpYQv3fHUHV-642t3aeLN35GP_j9lJUO7GiB9_KTB8yA1WAlKe5CRK6f_C_8FD1-wiQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural Analysis of β-Fructofuranosidase from Xanthophyllomyces dendrorhous Reveals Unique Features and the Crucial Role of N-Glycosylation in Oligomerization and Activity</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Ramírez-Escudero, Mercedes ; Gimeno-Pérez, María ; González, Beatriz ; Linde, Dolores ; Merdzo, Zoran ; Fernández-Lobato, María ; Sanz-Aparicio, Julia</creator><creatorcontrib>Ramírez-Escudero, Mercedes ; Gimeno-Pérez, María ; González, Beatriz ; Linde, Dolores ; Merdzo, Zoran ; Fernández-Lobato, María ; Sanz-Aparicio, Julia</creatorcontrib><description>Xanthophyllomyces dendrorhous β-fructofuranosidase (XdINV)is a highly glycosylated dimeric enzyme that hydrolyzes sucrose and releases fructose from various fructooligosaccharides (FOS) and fructans. It also catalyzes the synthesis of FOS, prebiotics that stimulate the growth of beneficial bacteria in human gut. In contrast to most fructosylating enzymes, XdINV produces neo-FOS, which makes it an interesting biotechnology target. We present here its three-dimensional structure, which shows the expected bimodular arrangement and also a long extension of its C terminus that together with an N-linked glycan mediate the formation of an unusual dimer. The two active sites of the dimer are connected by a long crevice, which might indicate its potential ability to accommodate branched fructans. This arrangement could be representative of a group of GH32 yeast enzymes having the traits observed in XdINV. The inactive D80A mutant was used to obtain complexes with relevant substrates and products, with their crystals structures showing at least four binding subsites at each active site. Moreover, two different positions are observed from subsite +2 depending on the substrate, and thus, a flexible loop (Glu-334–His-343) is essential in binding sucrose and β(2–1)-linked oligosaccharides. Conversely, β(2–6) and neo-type substrates are accommodated mainly by stacking to Trp-105, explaining the production of neokestose and the efficient fructosylating activity of XdINV on α-glucosides. The role of relevant residues has been investigated by mutagenesis and kinetics measurements, and a model for the transfructosylating reaction has been proposed. The plasticity of its active site makes XdINV a valuable and flexible biocatalyst to produce novel bioconjugates.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M115.708495</identifier><identifier>PMID: 26823463</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Basidiomycota - chemistry ; Basidiomycota - enzymology ; beta-Fructofuranosidase - chemistry ; beta-Fructofuranosidase - genetics ; beta-Fructofuranosidase - metabolism ; Biocatalysis ; Catalytic Domain ; Cloning, Molecular ; Crystallography, X-Ray ; enzyme mechanism ; enzyme structure ; Fructans - chemistry ; Fructans - metabolism ; Fructose - chemistry ; Fructose - metabolism ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Gene Expression ; glycoside hydrolase ; Glycosylation ; Hydrogen-Ion Concentration ; Hydrolysis ; kinetics ; Models, Molecular ; Molecular Sequence Data ; Mutation ; oligomerization ; Oligosaccharides - chemistry ; Oligosaccharides - metabolism ; Pichia - genetics ; Pichia - metabolism ; Protein Multimerization ; Protein Structure and Folding ; Protein Structure, Secondary ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Sequence Alignment ; Substrate Specificity ; Sucrose - chemistry ; Sucrose - metabolism ; X-ray crystallography</subject><ispartof>The Journal of biological chemistry, 2016-03, Vol.291 (13), p.6843-6857</ispartof><rights>2016 © 2016 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc. 2016 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3585-fb8daba896183c866948d160cda2ac8ec9d5b8471cca7cad86d30d6d804011463</citedby><cites>FETCH-LOGICAL-c3585-fb8daba896183c866948d160cda2ac8ec9d5b8471cca7cad86d30d6d804011463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4807271/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4807271/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26823463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramírez-Escudero, Mercedes</creatorcontrib><creatorcontrib>Gimeno-Pérez, María</creatorcontrib><creatorcontrib>González, Beatriz</creatorcontrib><creatorcontrib>Linde, Dolores</creatorcontrib><creatorcontrib>Merdzo, Zoran</creatorcontrib><creatorcontrib>Fernández-Lobato, María</creatorcontrib><creatorcontrib>Sanz-Aparicio, Julia</creatorcontrib><title>Structural Analysis of β-Fructofuranosidase from Xanthophyllomyces dendrorhous Reveals Unique Features and the Crucial Role of N-Glycosylation in Oligomerization and Activity</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Xanthophyllomyces dendrorhous β-fructofuranosidase (XdINV)is a highly glycosylated dimeric enzyme that hydrolyzes sucrose and releases fructose from various fructooligosaccharides (FOS) and fructans. It also catalyzes the synthesis of FOS, prebiotics that stimulate the growth of beneficial bacteria in human gut. In contrast to most fructosylating enzymes, XdINV produces neo-FOS, which makes it an interesting biotechnology target. We present here its three-dimensional structure, which shows the expected bimodular arrangement and also a long extension of its C terminus that together with an N-linked glycan mediate the formation of an unusual dimer. The two active sites of the dimer are connected by a long crevice, which might indicate its potential ability to accommodate branched fructans. This arrangement could be representative of a group of GH32 yeast enzymes having the traits observed in XdINV. The inactive D80A mutant was used to obtain complexes with relevant substrates and products, with their crystals structures showing at least four binding subsites at each active site. Moreover, two different positions are observed from subsite +2 depending on the substrate, and thus, a flexible loop (Glu-334–His-343) is essential in binding sucrose and β(2–1)-linked oligosaccharides. Conversely, β(2–6) and neo-type substrates are accommodated mainly by stacking to Trp-105, explaining the production of neokestose and the efficient fructosylating activity of XdINV on α-glucosides. The role of relevant residues has been investigated by mutagenesis and kinetics measurements, and a model for the transfructosylating reaction has been proposed. The plasticity of its active site makes XdINV a valuable and flexible biocatalyst to produce novel bioconjugates.</description><subject>Amino Acid Sequence</subject><subject>Basidiomycota - chemistry</subject><subject>Basidiomycota - enzymology</subject><subject>beta-Fructofuranosidase - chemistry</subject><subject>beta-Fructofuranosidase - genetics</subject><subject>beta-Fructofuranosidase - metabolism</subject><subject>Biocatalysis</subject><subject>Catalytic Domain</subject><subject>Cloning, Molecular</subject><subject>Crystallography, X-Ray</subject><subject>enzyme mechanism</subject><subject>enzyme structure</subject><subject>Fructans - chemistry</subject><subject>Fructans - metabolism</subject><subject>Fructose - chemistry</subject><subject>Fructose - metabolism</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Gene Expression</subject><subject>glycoside hydrolase</subject><subject>Glycosylation</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysis</subject><subject>kinetics</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>oligomerization</subject><subject>Oligosaccharides - chemistry</subject><subject>Oligosaccharides - metabolism</subject><subject>Pichia - genetics</subject><subject>Pichia - metabolism</subject><subject>Protein Multimerization</subject><subject>Protein Structure and Folding</subject><subject>Protein Structure, Secondary</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>Substrate Specificity</subject><subject>Sucrose - chemistry</subject><subject>Sucrose - metabolism</subject><subject>X-ray crystallography</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kd9qFDEYxYModq1eeyd5gdkm8zdzIyyLW4VqoVroXcgk33RSMsmaZBbGlxJ8EJ_JDKNFL8xNIOd8v0O-g9BrSraUNOXFQye3Hymttg1hZVs9QRtKWJEVFb17ijaE5DRr84qdoRchPJB0ypY-R2d5zfKirIsN-v45-knGyQuDd1aYOeiAXY9__sgOi-D6JFkXtBIBcO_diO-EjYM7DrMxbpwlBKzAKu_84KaAb-AEwgR8a_XXCfABRIInj7AKxwHwPlF1CrtxBpagT9mlmaULsxFRO4u1xddG37sRvP62Pi2jOxn1Scf5JXrWJzy8-n2fo9vDuy_799nV9eWH_e4qk0XFqqzvmBKdYG1NWSFZXbclU7QmUolcSAayVVXHyoZKKRopFKtVQVStGCkJpWkz5-jtyj1O3QhKgo1pRfzo9Sj8zJ3Q_F_F6oHfuxMvGWnyhibAxQqQ3oXgoX-cpYQv3fHUHV-642t3aeLN35GP_j9lJUO7GiB9_KTB8yA1WAlKe5CRK6f_C_8FD1-wiQ</recordid><startdate>20160325</startdate><enddate>20160325</enddate><creator>Ramírez-Escudero, Mercedes</creator><creator>Gimeno-Pérez, María</creator><creator>González, Beatriz</creator><creator>Linde, Dolores</creator><creator>Merdzo, Zoran</creator><creator>Fernández-Lobato, María</creator><creator>Sanz-Aparicio, Julia</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20160325</creationdate><title>Structural Analysis of β-Fructofuranosidase from Xanthophyllomyces dendrorhous Reveals Unique Features and the Crucial Role of N-Glycosylation in Oligomerization and Activity</title><author>Ramírez-Escudero, Mercedes ; Gimeno-Pérez, María ; González, Beatriz ; Linde, Dolores ; Merdzo, Zoran ; Fernández-Lobato, María ; Sanz-Aparicio, Julia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3585-fb8daba896183c866948d160cda2ac8ec9d5b8471cca7cad86d30d6d804011463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Sequence</topic><topic>Basidiomycota - chemistry</topic><topic>Basidiomycota - enzymology</topic><topic>beta-Fructofuranosidase - chemistry</topic><topic>beta-Fructofuranosidase - genetics</topic><topic>beta-Fructofuranosidase - metabolism</topic><topic>Biocatalysis</topic><topic>Catalytic Domain</topic><topic>Cloning, Molecular</topic><topic>Crystallography, X-Ray</topic><topic>enzyme mechanism</topic><topic>enzyme structure</topic><topic>Fructans - chemistry</topic><topic>Fructans - metabolism</topic><topic>Fructose - chemistry</topic><topic>Fructose - metabolism</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Gene Expression</topic><topic>glycoside hydrolase</topic><topic>Glycosylation</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysis</topic><topic>kinetics</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>oligomerization</topic><topic>Oligosaccharides - chemistry</topic><topic>Oligosaccharides - metabolism</topic><topic>Pichia - genetics</topic><topic>Pichia - metabolism</topic><topic>Protein Multimerization</topic><topic>Protein Structure and Folding</topic><topic>Protein Structure, Secondary</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>Substrate Specificity</topic><topic>Sucrose - chemistry</topic><topic>Sucrose - metabolism</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramírez-Escudero, Mercedes</creatorcontrib><creatorcontrib>Gimeno-Pérez, María</creatorcontrib><creatorcontrib>González, Beatriz</creatorcontrib><creatorcontrib>Linde, Dolores</creatorcontrib><creatorcontrib>Merdzo, Zoran</creatorcontrib><creatorcontrib>Fernández-Lobato, María</creatorcontrib><creatorcontrib>Sanz-Aparicio, Julia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramírez-Escudero, Mercedes</au><au>Gimeno-Pérez, María</au><au>González, Beatriz</au><au>Linde, Dolores</au><au>Merdzo, Zoran</au><au>Fernández-Lobato, María</au><au>Sanz-Aparicio, Julia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Analysis of β-Fructofuranosidase from Xanthophyllomyces dendrorhous Reveals Unique Features and the Crucial Role of N-Glycosylation in Oligomerization and Activity</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2016-03-25</date><risdate>2016</risdate><volume>291</volume><issue>13</issue><spage>6843</spage><epage>6857</epage><pages>6843-6857</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Xanthophyllomyces dendrorhous β-fructofuranosidase (XdINV)is a highly glycosylated dimeric enzyme that hydrolyzes sucrose and releases fructose from various fructooligosaccharides (FOS) and fructans. It also catalyzes the synthesis of FOS, prebiotics that stimulate the growth of beneficial bacteria in human gut. In contrast to most fructosylating enzymes, XdINV produces neo-FOS, which makes it an interesting biotechnology target. We present here its three-dimensional structure, which shows the expected bimodular arrangement and also a long extension of its C terminus that together with an N-linked glycan mediate the formation of an unusual dimer. The two active sites of the dimer are connected by a long crevice, which might indicate its potential ability to accommodate branched fructans. This arrangement could be representative of a group of GH32 yeast enzymes having the traits observed in XdINV. The inactive D80A mutant was used to obtain complexes with relevant substrates and products, with their crystals structures showing at least four binding subsites at each active site. Moreover, two different positions are observed from subsite +2 depending on the substrate, and thus, a flexible loop (Glu-334–His-343) is essential in binding sucrose and β(2–1)-linked oligosaccharides. Conversely, β(2–6) and neo-type substrates are accommodated mainly by stacking to Trp-105, explaining the production of neokestose and the efficient fructosylating activity of XdINV on α-glucosides. The role of relevant residues has been investigated by mutagenesis and kinetics measurements, and a model for the transfructosylating reaction has been proposed. The plasticity of its active site makes XdINV a valuable and flexible biocatalyst to produce novel bioconjugates.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26823463</pmid><doi>10.1074/jbc.M115.708495</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2016-03, Vol.291 (13), p.6843-6857
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4807271
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Amino Acid Sequence
Basidiomycota - chemistry
Basidiomycota - enzymology
beta-Fructofuranosidase - chemistry
beta-Fructofuranosidase - genetics
beta-Fructofuranosidase - metabolism
Biocatalysis
Catalytic Domain
Cloning, Molecular
Crystallography, X-Ray
enzyme mechanism
enzyme structure
Fructans - chemistry
Fructans - metabolism
Fructose - chemistry
Fructose - metabolism
Fungal Proteins - chemistry
Fungal Proteins - genetics
Fungal Proteins - metabolism
Gene Expression
glycoside hydrolase
Glycosylation
Hydrogen-Ion Concentration
Hydrolysis
kinetics
Models, Molecular
Molecular Sequence Data
Mutation
oligomerization
Oligosaccharides - chemistry
Oligosaccharides - metabolism
Pichia - genetics
Pichia - metabolism
Protein Multimerization
Protein Structure and Folding
Protein Structure, Secondary
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Sequence Alignment
Substrate Specificity
Sucrose - chemistry
Sucrose - metabolism
X-ray crystallography
title Structural Analysis of β-Fructofuranosidase from Xanthophyllomyces dendrorhous Reveals Unique Features and the Crucial Role of N-Glycosylation in Oligomerization and Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Analysis%20of%20%CE%B2-Fructofuranosidase%20from%20Xanthophyllomyces%20dendrorhous%20Reveals%20Unique%20Features%20and%20the%20Crucial%20Role%20of%20N-Glycosylation%20in%20Oligomerization%20and%20Activity&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Ram%C3%ADrez-Escudero,%20Mercedes&rft.date=2016-03-25&rft.volume=291&rft.issue=13&rft.spage=6843&rft.epage=6857&rft.pages=6843-6857&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M115.708495&rft_dat=%3Celsevier_pubme%3ES0021925820429412%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/26823463&rft_els_id=S0021925820429412&rfr_iscdi=true