Structural Analysis of β-Fructofuranosidase from Xanthophyllomyces dendrorhous Reveals Unique Features and the Crucial Role of N-Glycosylation in Oligomerization and Activity
Xanthophyllomyces dendrorhous β-fructofuranosidase (XdINV)is a highly glycosylated dimeric enzyme that hydrolyzes sucrose and releases fructose from various fructooligosaccharides (FOS) and fructans. It also catalyzes the synthesis of FOS, prebiotics that stimulate the growth of beneficial bacteria...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2016-03, Vol.291 (13), p.6843-6857 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6857 |
---|---|
container_issue | 13 |
container_start_page | 6843 |
container_title | The Journal of biological chemistry |
container_volume | 291 |
creator | Ramírez-Escudero, Mercedes Gimeno-Pérez, María González, Beatriz Linde, Dolores Merdzo, Zoran Fernández-Lobato, María Sanz-Aparicio, Julia |
description | Xanthophyllomyces dendrorhous β-fructofuranosidase (XdINV)is a highly glycosylated dimeric enzyme that hydrolyzes sucrose and releases fructose from various fructooligosaccharides (FOS) and fructans. It also catalyzes the synthesis of FOS, prebiotics that stimulate the growth of beneficial bacteria in human gut. In contrast to most fructosylating enzymes, XdINV produces neo-FOS, which makes it an interesting biotechnology target. We present here its three-dimensional structure, which shows the expected bimodular arrangement and also a long extension of its C terminus that together with an N-linked glycan mediate the formation of an unusual dimer. The two active sites of the dimer are connected by a long crevice, which might indicate its potential ability to accommodate branched fructans. This arrangement could be representative of a group of GH32 yeast enzymes having the traits observed in XdINV. The inactive D80A mutant was used to obtain complexes with relevant substrates and products, with their crystals structures showing at least four binding subsites at each active site. Moreover, two different positions are observed from subsite +2 depending on the substrate, and thus, a flexible loop (Glu-334–His-343) is essential in binding sucrose and β(2–1)-linked oligosaccharides. Conversely, β(2–6) and neo-type substrates are accommodated mainly by stacking to Trp-105, explaining the production of neokestose and the efficient fructosylating activity of XdINV on α-glucosides. The role of relevant residues has been investigated by mutagenesis and kinetics measurements, and a model for the transfructosylating reaction has been proposed. The plasticity of its active site makes XdINV a valuable and flexible biocatalyst to produce novel bioconjugates. |
doi_str_mv | 10.1074/jbc.M115.708495 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4807271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820429412</els_id><sourcerecordid>S0021925820429412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3585-fb8daba896183c866948d160cda2ac8ec9d5b8471cca7cad86d30d6d804011463</originalsourceid><addsrcrecordid>eNp1kd9qFDEYxYModq1eeyd5gdkm8zdzIyyLW4VqoVroXcgk33RSMsmaZBbGlxJ8EJ_JDKNFL8xNIOd8v0O-g9BrSraUNOXFQye3Hymttg1hZVs9QRtKWJEVFb17ijaE5DRr84qdoRchPJB0ypY-R2d5zfKirIsN-v45-knGyQuDd1aYOeiAXY9__sgOi-D6JFkXtBIBcO_diO-EjYM7DrMxbpwlBKzAKu_84KaAb-AEwgR8a_XXCfABRIInj7AKxwHwPlF1CrtxBpagT9mlmaULsxFRO4u1xddG37sRvP62Pi2jOxn1Scf5JXrWJzy8-n2fo9vDuy_799nV9eWH_e4qk0XFqqzvmBKdYG1NWSFZXbclU7QmUolcSAayVVXHyoZKKRopFKtVQVStGCkJpWkz5-jtyj1O3QhKgo1pRfzo9Sj8zJ3Q_F_F6oHfuxMvGWnyhibAxQqQ3oXgoX-cpYQv3fHUHV-642t3aeLN35GP_j9lJUO7GiB9_KTB8yA1WAlKe5CRK6f_C_8FD1-wiQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural Analysis of β-Fructofuranosidase from Xanthophyllomyces dendrorhous Reveals Unique Features and the Crucial Role of N-Glycosylation in Oligomerization and Activity</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Ramírez-Escudero, Mercedes ; Gimeno-Pérez, María ; González, Beatriz ; Linde, Dolores ; Merdzo, Zoran ; Fernández-Lobato, María ; Sanz-Aparicio, Julia</creator><creatorcontrib>Ramírez-Escudero, Mercedes ; Gimeno-Pérez, María ; González, Beatriz ; Linde, Dolores ; Merdzo, Zoran ; Fernández-Lobato, María ; Sanz-Aparicio, Julia</creatorcontrib><description>Xanthophyllomyces dendrorhous β-fructofuranosidase (XdINV)is a highly glycosylated dimeric enzyme that hydrolyzes sucrose and releases fructose from various fructooligosaccharides (FOS) and fructans. It also catalyzes the synthesis of FOS, prebiotics that stimulate the growth of beneficial bacteria in human gut. In contrast to most fructosylating enzymes, XdINV produces neo-FOS, which makes it an interesting biotechnology target. We present here its three-dimensional structure, which shows the expected bimodular arrangement and also a long extension of its C terminus that together with an N-linked glycan mediate the formation of an unusual dimer. The two active sites of the dimer are connected by a long crevice, which might indicate its potential ability to accommodate branched fructans. This arrangement could be representative of a group of GH32 yeast enzymes having the traits observed in XdINV. The inactive D80A mutant was used to obtain complexes with relevant substrates and products, with their crystals structures showing at least four binding subsites at each active site. Moreover, two different positions are observed from subsite +2 depending on the substrate, and thus, a flexible loop (Glu-334–His-343) is essential in binding sucrose and β(2–1)-linked oligosaccharides. Conversely, β(2–6) and neo-type substrates are accommodated mainly by stacking to Trp-105, explaining the production of neokestose and the efficient fructosylating activity of XdINV on α-glucosides. The role of relevant residues has been investigated by mutagenesis and kinetics measurements, and a model for the transfructosylating reaction has been proposed. The plasticity of its active site makes XdINV a valuable and flexible biocatalyst to produce novel bioconjugates.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M115.708495</identifier><identifier>PMID: 26823463</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Basidiomycota - chemistry ; Basidiomycota - enzymology ; beta-Fructofuranosidase - chemistry ; beta-Fructofuranosidase - genetics ; beta-Fructofuranosidase - metabolism ; Biocatalysis ; Catalytic Domain ; Cloning, Molecular ; Crystallography, X-Ray ; enzyme mechanism ; enzyme structure ; Fructans - chemistry ; Fructans - metabolism ; Fructose - chemistry ; Fructose - metabolism ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Gene Expression ; glycoside hydrolase ; Glycosylation ; Hydrogen-Ion Concentration ; Hydrolysis ; kinetics ; Models, Molecular ; Molecular Sequence Data ; Mutation ; oligomerization ; Oligosaccharides - chemistry ; Oligosaccharides - metabolism ; Pichia - genetics ; Pichia - metabolism ; Protein Multimerization ; Protein Structure and Folding ; Protein Structure, Secondary ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Sequence Alignment ; Substrate Specificity ; Sucrose - chemistry ; Sucrose - metabolism ; X-ray crystallography</subject><ispartof>The Journal of biological chemistry, 2016-03, Vol.291 (13), p.6843-6857</ispartof><rights>2016 © 2016 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc. 2016 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3585-fb8daba896183c866948d160cda2ac8ec9d5b8471cca7cad86d30d6d804011463</citedby><cites>FETCH-LOGICAL-c3585-fb8daba896183c866948d160cda2ac8ec9d5b8471cca7cad86d30d6d804011463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4807271/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4807271/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26823463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramírez-Escudero, Mercedes</creatorcontrib><creatorcontrib>Gimeno-Pérez, María</creatorcontrib><creatorcontrib>González, Beatriz</creatorcontrib><creatorcontrib>Linde, Dolores</creatorcontrib><creatorcontrib>Merdzo, Zoran</creatorcontrib><creatorcontrib>Fernández-Lobato, María</creatorcontrib><creatorcontrib>Sanz-Aparicio, Julia</creatorcontrib><title>Structural Analysis of β-Fructofuranosidase from Xanthophyllomyces dendrorhous Reveals Unique Features and the Crucial Role of N-Glycosylation in Oligomerization and Activity</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Xanthophyllomyces dendrorhous β-fructofuranosidase (XdINV)is a highly glycosylated dimeric enzyme that hydrolyzes sucrose and releases fructose from various fructooligosaccharides (FOS) and fructans. It also catalyzes the synthesis of FOS, prebiotics that stimulate the growth of beneficial bacteria in human gut. In contrast to most fructosylating enzymes, XdINV produces neo-FOS, which makes it an interesting biotechnology target. We present here its three-dimensional structure, which shows the expected bimodular arrangement and also a long extension of its C terminus that together with an N-linked glycan mediate the formation of an unusual dimer. The two active sites of the dimer are connected by a long crevice, which might indicate its potential ability to accommodate branched fructans. This arrangement could be representative of a group of GH32 yeast enzymes having the traits observed in XdINV. The inactive D80A mutant was used to obtain complexes with relevant substrates and products, with their crystals structures showing at least four binding subsites at each active site. Moreover, two different positions are observed from subsite +2 depending on the substrate, and thus, a flexible loop (Glu-334–His-343) is essential in binding sucrose and β(2–1)-linked oligosaccharides. Conversely, β(2–6) and neo-type substrates are accommodated mainly by stacking to Trp-105, explaining the production of neokestose and the efficient fructosylating activity of XdINV on α-glucosides. The role of relevant residues has been investigated by mutagenesis and kinetics measurements, and a model for the transfructosylating reaction has been proposed. The plasticity of its active site makes XdINV a valuable and flexible biocatalyst to produce novel bioconjugates.</description><subject>Amino Acid Sequence</subject><subject>Basidiomycota - chemistry</subject><subject>Basidiomycota - enzymology</subject><subject>beta-Fructofuranosidase - chemistry</subject><subject>beta-Fructofuranosidase - genetics</subject><subject>beta-Fructofuranosidase - metabolism</subject><subject>Biocatalysis</subject><subject>Catalytic Domain</subject><subject>Cloning, Molecular</subject><subject>Crystallography, X-Ray</subject><subject>enzyme mechanism</subject><subject>enzyme structure</subject><subject>Fructans - chemistry</subject><subject>Fructans - metabolism</subject><subject>Fructose - chemistry</subject><subject>Fructose - metabolism</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Gene Expression</subject><subject>glycoside hydrolase</subject><subject>Glycosylation</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysis</subject><subject>kinetics</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>oligomerization</subject><subject>Oligosaccharides - chemistry</subject><subject>Oligosaccharides - metabolism</subject><subject>Pichia - genetics</subject><subject>Pichia - metabolism</subject><subject>Protein Multimerization</subject><subject>Protein Structure and Folding</subject><subject>Protein Structure, Secondary</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>Substrate Specificity</subject><subject>Sucrose - chemistry</subject><subject>Sucrose - metabolism</subject><subject>X-ray crystallography</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kd9qFDEYxYModq1eeyd5gdkm8zdzIyyLW4VqoVroXcgk33RSMsmaZBbGlxJ8EJ_JDKNFL8xNIOd8v0O-g9BrSraUNOXFQye3Hymttg1hZVs9QRtKWJEVFb17ijaE5DRr84qdoRchPJB0ypY-R2d5zfKirIsN-v45-knGyQuDd1aYOeiAXY9__sgOi-D6JFkXtBIBcO_diO-EjYM7DrMxbpwlBKzAKu_84KaAb-AEwgR8a_XXCfABRIInj7AKxwHwPlF1CrtxBpagT9mlmaULsxFRO4u1xddG37sRvP62Pi2jOxn1Scf5JXrWJzy8-n2fo9vDuy_799nV9eWH_e4qk0XFqqzvmBKdYG1NWSFZXbclU7QmUolcSAayVVXHyoZKKRopFKtVQVStGCkJpWkz5-jtyj1O3QhKgo1pRfzo9Sj8zJ3Q_F_F6oHfuxMvGWnyhibAxQqQ3oXgoX-cpYQv3fHUHV-642t3aeLN35GP_j9lJUO7GiB9_KTB8yA1WAlKe5CRK6f_C_8FD1-wiQ</recordid><startdate>20160325</startdate><enddate>20160325</enddate><creator>Ramírez-Escudero, Mercedes</creator><creator>Gimeno-Pérez, María</creator><creator>González, Beatriz</creator><creator>Linde, Dolores</creator><creator>Merdzo, Zoran</creator><creator>Fernández-Lobato, María</creator><creator>Sanz-Aparicio, Julia</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20160325</creationdate><title>Structural Analysis of β-Fructofuranosidase from Xanthophyllomyces dendrorhous Reveals Unique Features and the Crucial Role of N-Glycosylation in Oligomerization and Activity</title><author>Ramírez-Escudero, Mercedes ; Gimeno-Pérez, María ; González, Beatriz ; Linde, Dolores ; Merdzo, Zoran ; Fernández-Lobato, María ; Sanz-Aparicio, Julia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3585-fb8daba896183c866948d160cda2ac8ec9d5b8471cca7cad86d30d6d804011463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Sequence</topic><topic>Basidiomycota - chemistry</topic><topic>Basidiomycota - enzymology</topic><topic>beta-Fructofuranosidase - chemistry</topic><topic>beta-Fructofuranosidase - genetics</topic><topic>beta-Fructofuranosidase - metabolism</topic><topic>Biocatalysis</topic><topic>Catalytic Domain</topic><topic>Cloning, Molecular</topic><topic>Crystallography, X-Ray</topic><topic>enzyme mechanism</topic><topic>enzyme structure</topic><topic>Fructans - chemistry</topic><topic>Fructans - metabolism</topic><topic>Fructose - chemistry</topic><topic>Fructose - metabolism</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Gene Expression</topic><topic>glycoside hydrolase</topic><topic>Glycosylation</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysis</topic><topic>kinetics</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>oligomerization</topic><topic>Oligosaccharides - chemistry</topic><topic>Oligosaccharides - metabolism</topic><topic>Pichia - genetics</topic><topic>Pichia - metabolism</topic><topic>Protein Multimerization</topic><topic>Protein Structure and Folding</topic><topic>Protein Structure, Secondary</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>Substrate Specificity</topic><topic>Sucrose - chemistry</topic><topic>Sucrose - metabolism</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramírez-Escudero, Mercedes</creatorcontrib><creatorcontrib>Gimeno-Pérez, María</creatorcontrib><creatorcontrib>González, Beatriz</creatorcontrib><creatorcontrib>Linde, Dolores</creatorcontrib><creatorcontrib>Merdzo, Zoran</creatorcontrib><creatorcontrib>Fernández-Lobato, María</creatorcontrib><creatorcontrib>Sanz-Aparicio, Julia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramírez-Escudero, Mercedes</au><au>Gimeno-Pérez, María</au><au>González, Beatriz</au><au>Linde, Dolores</au><au>Merdzo, Zoran</au><au>Fernández-Lobato, María</au><au>Sanz-Aparicio, Julia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Analysis of β-Fructofuranosidase from Xanthophyllomyces dendrorhous Reveals Unique Features and the Crucial Role of N-Glycosylation in Oligomerization and Activity</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2016-03-25</date><risdate>2016</risdate><volume>291</volume><issue>13</issue><spage>6843</spage><epage>6857</epage><pages>6843-6857</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Xanthophyllomyces dendrorhous β-fructofuranosidase (XdINV)is a highly glycosylated dimeric enzyme that hydrolyzes sucrose and releases fructose from various fructooligosaccharides (FOS) and fructans. It also catalyzes the synthesis of FOS, prebiotics that stimulate the growth of beneficial bacteria in human gut. In contrast to most fructosylating enzymes, XdINV produces neo-FOS, which makes it an interesting biotechnology target. We present here its three-dimensional structure, which shows the expected bimodular arrangement and also a long extension of its C terminus that together with an N-linked glycan mediate the formation of an unusual dimer. The two active sites of the dimer are connected by a long crevice, which might indicate its potential ability to accommodate branched fructans. This arrangement could be representative of a group of GH32 yeast enzymes having the traits observed in XdINV. The inactive D80A mutant was used to obtain complexes with relevant substrates and products, with their crystals structures showing at least four binding subsites at each active site. Moreover, two different positions are observed from subsite +2 depending on the substrate, and thus, a flexible loop (Glu-334–His-343) is essential in binding sucrose and β(2–1)-linked oligosaccharides. Conversely, β(2–6) and neo-type substrates are accommodated mainly by stacking to Trp-105, explaining the production of neokestose and the efficient fructosylating activity of XdINV on α-glucosides. The role of relevant residues has been investigated by mutagenesis and kinetics measurements, and a model for the transfructosylating reaction has been proposed. The plasticity of its active site makes XdINV a valuable and flexible biocatalyst to produce novel bioconjugates.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26823463</pmid><doi>10.1074/jbc.M115.708495</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2016-03, Vol.291 (13), p.6843-6857 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4807271 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Amino Acid Sequence Basidiomycota - chemistry Basidiomycota - enzymology beta-Fructofuranosidase - chemistry beta-Fructofuranosidase - genetics beta-Fructofuranosidase - metabolism Biocatalysis Catalytic Domain Cloning, Molecular Crystallography, X-Ray enzyme mechanism enzyme structure Fructans - chemistry Fructans - metabolism Fructose - chemistry Fructose - metabolism Fungal Proteins - chemistry Fungal Proteins - genetics Fungal Proteins - metabolism Gene Expression glycoside hydrolase Glycosylation Hydrogen-Ion Concentration Hydrolysis kinetics Models, Molecular Molecular Sequence Data Mutation oligomerization Oligosaccharides - chemistry Oligosaccharides - metabolism Pichia - genetics Pichia - metabolism Protein Multimerization Protein Structure and Folding Protein Structure, Secondary Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Sequence Alignment Substrate Specificity Sucrose - chemistry Sucrose - metabolism X-ray crystallography |
title | Structural Analysis of β-Fructofuranosidase from Xanthophyllomyces dendrorhous Reveals Unique Features and the Crucial Role of N-Glycosylation in Oligomerization and Activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Analysis%20of%20%CE%B2-Fructofuranosidase%20from%20Xanthophyllomyces%20dendrorhous%20Reveals%20Unique%20Features%20and%20the%20Crucial%20Role%20of%20N-Glycosylation%20in%20Oligomerization%20and%20Activity&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Ram%C3%ADrez-Escudero,%20Mercedes&rft.date=2016-03-25&rft.volume=291&rft.issue=13&rft.spage=6843&rft.epage=6857&rft.pages=6843-6857&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M115.708495&rft_dat=%3Celsevier_pubme%3ES0021925820429412%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/26823463&rft_els_id=S0021925820429412&rfr_iscdi=true |