Adaptive selection and coevolution at the proteins of the Polycomb repressive complexes in Drosophila
Polycomb group (PcG) proteins are important epigenetic regulatory proteins that modulate the chromatin state through posttranslational histone modifications. These interacting proteins form multimeric complexes that repress gene expression. Thus, PcG proteins are expected to evolve coordinately, whi...
Gespeichert in:
Veröffentlicht in: | Heredity 2016-02, Vol.116 (2), p.213-223 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 223 |
---|---|
container_issue | 2 |
container_start_page | 213 |
container_title | Heredity |
container_volume | 116 |
creator | Calvo-Martín, J M Librado, P Aguadé, M Papaceit, M Segarra, C |
description | Polycomb group (PcG) proteins are important epigenetic regulatory proteins that modulate the chromatin state through posttranslational histone modifications. These interacting proteins form multimeric complexes that repress gene expression. Thus, PcG proteins are expected to evolve coordinately, which might be reflected in their phylogenetic trees by concordant episodes of positive selection and by a correlation in evolutionary rates. In order to detect these signals of coevolution, the molecular evolution of 17 genes encoding the subunits of five Polycomb repressive complexes has been analyzed in the Drosophila genus. The observed distribution of divergence differs substantially among and along proteins. Indeed, CAF1 is uniformly conserved, whereas only the established protein domains are conserved in other proteins, such as PHO, PHOL, PSC, PH-P and ASX. Moreover, regions with a low divergence not yet described as protein domains are present, for instance, in SFMBT and SU(Z)12. Maximum likelihood methods indicate an acceleration in the nonsynonymous substitution rate at the lineage ancestral to the obscura group species in most genes encoding subunits of the Pcl-PRC2 complex and in genes Sfmbt, Psc and Kdm2. These methods also allow inferring the action of positive selection in this lineage at genes E(z) and Sfmbt. Finally, the protein interaction network predicted from the complete proteomes of 12 Drosophila species using a coevolutionary approach shows two tight PcG clusters. These clusters include well-established binary interactions among PcG proteins as well as new putative interactions. |
doi_str_mv | 10.1038/hdy.2015.91 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4806890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3919489681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-eb8bfd5af2e464e7f1a11171616893de4f36094ee37e352633df160ca108ca553</originalsourceid><addsrcrecordid>eNqNkc9rFDEUx4NY7Fo9eZeAl4LMmjeZ_JiLUKqthYIeLPQWspk3bkp2MiYzi_vfN-vWop56Cl_y4fve-34JeQNsCYzrD-tut6wZiGULz8gCuBRVLRr2nCwYA10xqW6Pycuc7xhjXNXtC3Jcy0ZLydoFwbPOjpPfIs0Y0E0-DtQOHXURtzHMBz3RaY10THFCP2Qa-9_6Www7FzcrmnBMmPPepOgx4C_M1A_0U4o5jmsf7Cty1NuQ8fXDe0JuLj5_P_9SXX-9vDo_u66cgHqqcKVXfSdsX2MjG1Q9WABQIEHqlnfY9Lws3SByhVzUkvOuB8mcBaadFYKfkI8H33FebbBzOEzJBjMmv7FpZ6L15t-fwa_Nj7g1jWZlBCsGpw8GKf6cMU9m47PDEOyAcc4GlBStUiXTp6BMK8HbtqDv_kPv4pyGkkShhCyjhdCFen-gXMktJ-wf9wZm9k2b0rTZN21aKPTbv099ZP9Uy-8BJjmlyg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1756068558</pqid></control><display><type>article</type><title>Adaptive selection and coevolution at the proteins of the Polycomb repressive complexes in Drosophila</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Journals Online</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Calvo-Martín, J M ; Librado, P ; Aguadé, M ; Papaceit, M ; Segarra, C</creator><creatorcontrib>Calvo-Martín, J M ; Librado, P ; Aguadé, M ; Papaceit, M ; Segarra, C</creatorcontrib><description>Polycomb group (PcG) proteins are important epigenetic regulatory proteins that modulate the chromatin state through posttranslational histone modifications. These interacting proteins form multimeric complexes that repress gene expression. Thus, PcG proteins are expected to evolve coordinately, which might be reflected in their phylogenetic trees by concordant episodes of positive selection and by a correlation in evolutionary rates. In order to detect these signals of coevolution, the molecular evolution of 17 genes encoding the subunits of five Polycomb repressive complexes has been analyzed in the Drosophila genus. The observed distribution of divergence differs substantially among and along proteins. Indeed, CAF1 is uniformly conserved, whereas only the established protein domains are conserved in other proteins, such as PHO, PHOL, PSC, PH-P and ASX. Moreover, regions with a low divergence not yet described as protein domains are present, for instance, in SFMBT and SU(Z)12. Maximum likelihood methods indicate an acceleration in the nonsynonymous substitution rate at the lineage ancestral to the obscura group species in most genes encoding subunits of the Pcl-PRC2 complex and in genes Sfmbt, Psc and Kdm2. These methods also allow inferring the action of positive selection in this lineage at genes E(z) and Sfmbt. Finally, the protein interaction network predicted from the complete proteomes of 12 Drosophila species using a coevolutionary approach shows two tight PcG clusters. These clusters include well-established binary interactions among PcG proteins as well as new putative interactions.</description><identifier>ISSN: 0018-067X</identifier><identifier>EISSN: 1365-2540</identifier><identifier>DOI: 10.1038/hdy.2015.91</identifier><identifier>PMID: 26486609</identifier><identifier>CODEN: HDTYAT</identifier><language>eng</language><publisher>England: Springer Nature B.V</publisher><subject>Adaptation, Biological - genetics ; Animal populations ; Animals ; Drosophila ; Drosophila - genetics ; Drosophila Proteins - genetics ; Evolution, Molecular ; Gene expression ; Genetic diversity ; Insects ; Likelihood Functions ; Original ; Polycomb-Group Proteins - genetics ; Proteins ; Selection, Genetic ; Sequence Analysis, DNA</subject><ispartof>Heredity, 2016-02, Vol.116 (2), p.213-223</ispartof><rights>Copyright Nature Publishing Group Feb 2016</rights><rights>Copyright © 2016 The Genetics Society 2016 The Genetics Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-eb8bfd5af2e464e7f1a11171616893de4f36094ee37e352633df160ca108ca553</citedby><cites>FETCH-LOGICAL-c512t-eb8bfd5af2e464e7f1a11171616893de4f36094ee37e352633df160ca108ca553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4806890/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4806890/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26486609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Calvo-Martín, J M</creatorcontrib><creatorcontrib>Librado, P</creatorcontrib><creatorcontrib>Aguadé, M</creatorcontrib><creatorcontrib>Papaceit, M</creatorcontrib><creatorcontrib>Segarra, C</creatorcontrib><title>Adaptive selection and coevolution at the proteins of the Polycomb repressive complexes in Drosophila</title><title>Heredity</title><addtitle>Heredity (Edinb)</addtitle><description>Polycomb group (PcG) proteins are important epigenetic regulatory proteins that modulate the chromatin state through posttranslational histone modifications. These interacting proteins form multimeric complexes that repress gene expression. Thus, PcG proteins are expected to evolve coordinately, which might be reflected in their phylogenetic trees by concordant episodes of positive selection and by a correlation in evolutionary rates. In order to detect these signals of coevolution, the molecular evolution of 17 genes encoding the subunits of five Polycomb repressive complexes has been analyzed in the Drosophila genus. The observed distribution of divergence differs substantially among and along proteins. Indeed, CAF1 is uniformly conserved, whereas only the established protein domains are conserved in other proteins, such as PHO, PHOL, PSC, PH-P and ASX. Moreover, regions with a low divergence not yet described as protein domains are present, for instance, in SFMBT and SU(Z)12. Maximum likelihood methods indicate an acceleration in the nonsynonymous substitution rate at the lineage ancestral to the obscura group species in most genes encoding subunits of the Pcl-PRC2 complex and in genes Sfmbt, Psc and Kdm2. These methods also allow inferring the action of positive selection in this lineage at genes E(z) and Sfmbt. Finally, the protein interaction network predicted from the complete proteomes of 12 Drosophila species using a coevolutionary approach shows two tight PcG clusters. These clusters include well-established binary interactions among PcG proteins as well as new putative interactions.</description><subject>Adaptation, Biological - genetics</subject><subject>Animal populations</subject><subject>Animals</subject><subject>Drosophila</subject><subject>Drosophila - genetics</subject><subject>Drosophila Proteins - genetics</subject><subject>Evolution, Molecular</subject><subject>Gene expression</subject><subject>Genetic diversity</subject><subject>Insects</subject><subject>Likelihood Functions</subject><subject>Original</subject><subject>Polycomb-Group Proteins - genetics</subject><subject>Proteins</subject><subject>Selection, Genetic</subject><subject>Sequence Analysis, DNA</subject><issn>0018-067X</issn><issn>1365-2540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkc9rFDEUx4NY7Fo9eZeAl4LMmjeZ_JiLUKqthYIeLPQWspk3bkp2MiYzi_vfN-vWop56Cl_y4fve-34JeQNsCYzrD-tut6wZiGULz8gCuBRVLRr2nCwYA10xqW6Pycuc7xhjXNXtC3Jcy0ZLydoFwbPOjpPfIs0Y0E0-DtQOHXURtzHMBz3RaY10THFCP2Qa-9_6Www7FzcrmnBMmPPepOgx4C_M1A_0U4o5jmsf7Cty1NuQ8fXDe0JuLj5_P_9SXX-9vDo_u66cgHqqcKVXfSdsX2MjG1Q9WABQIEHqlnfY9Lws3SByhVzUkvOuB8mcBaadFYKfkI8H33FebbBzOEzJBjMmv7FpZ6L15t-fwa_Nj7g1jWZlBCsGpw8GKf6cMU9m47PDEOyAcc4GlBStUiXTp6BMK8HbtqDv_kPv4pyGkkShhCyjhdCFen-gXMktJ-wf9wZm9k2b0rTZN21aKPTbv099ZP9Uy-8BJjmlyg</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Calvo-Martín, J M</creator><creator>Librado, P</creator><creator>Aguadé, M</creator><creator>Papaceit, M</creator><creator>Segarra, C</creator><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160201</creationdate><title>Adaptive selection and coevolution at the proteins of the Polycomb repressive complexes in Drosophila</title><author>Calvo-Martín, J M ; Librado, P ; Aguadé, M ; Papaceit, M ; Segarra, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-eb8bfd5af2e464e7f1a11171616893de4f36094ee37e352633df160ca108ca553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation, Biological - genetics</topic><topic>Animal populations</topic><topic>Animals</topic><topic>Drosophila</topic><topic>Drosophila - genetics</topic><topic>Drosophila Proteins - genetics</topic><topic>Evolution, Molecular</topic><topic>Gene expression</topic><topic>Genetic diversity</topic><topic>Insects</topic><topic>Likelihood Functions</topic><topic>Original</topic><topic>Polycomb-Group Proteins - genetics</topic><topic>Proteins</topic><topic>Selection, Genetic</topic><topic>Sequence Analysis, DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calvo-Martín, J M</creatorcontrib><creatorcontrib>Librado, P</creatorcontrib><creatorcontrib>Aguadé, M</creatorcontrib><creatorcontrib>Papaceit, M</creatorcontrib><creatorcontrib>Segarra, C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Heredity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calvo-Martín, J M</au><au>Librado, P</au><au>Aguadé, M</au><au>Papaceit, M</au><au>Segarra, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive selection and coevolution at the proteins of the Polycomb repressive complexes in Drosophila</atitle><jtitle>Heredity</jtitle><addtitle>Heredity (Edinb)</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>116</volume><issue>2</issue><spage>213</spage><epage>223</epage><pages>213-223</pages><issn>0018-067X</issn><eissn>1365-2540</eissn><coden>HDTYAT</coden><abstract>Polycomb group (PcG) proteins are important epigenetic regulatory proteins that modulate the chromatin state through posttranslational histone modifications. These interacting proteins form multimeric complexes that repress gene expression. Thus, PcG proteins are expected to evolve coordinately, which might be reflected in their phylogenetic trees by concordant episodes of positive selection and by a correlation in evolutionary rates. In order to detect these signals of coevolution, the molecular evolution of 17 genes encoding the subunits of five Polycomb repressive complexes has been analyzed in the Drosophila genus. The observed distribution of divergence differs substantially among and along proteins. Indeed, CAF1 is uniformly conserved, whereas only the established protein domains are conserved in other proteins, such as PHO, PHOL, PSC, PH-P and ASX. Moreover, regions with a low divergence not yet described as protein domains are present, for instance, in SFMBT and SU(Z)12. Maximum likelihood methods indicate an acceleration in the nonsynonymous substitution rate at the lineage ancestral to the obscura group species in most genes encoding subunits of the Pcl-PRC2 complex and in genes Sfmbt, Psc and Kdm2. These methods also allow inferring the action of positive selection in this lineage at genes E(z) and Sfmbt. Finally, the protein interaction network predicted from the complete proteomes of 12 Drosophila species using a coevolutionary approach shows two tight PcG clusters. These clusters include well-established binary interactions among PcG proteins as well as new putative interactions.</abstract><cop>England</cop><pub>Springer Nature B.V</pub><pmid>26486609</pmid><doi>10.1038/hdy.2015.91</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-067X |
ispartof | Heredity, 2016-02, Vol.116 (2), p.213-223 |
issn | 0018-067X 1365-2540 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4806890 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Journals Online; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | Adaptation, Biological - genetics Animal populations Animals Drosophila Drosophila - genetics Drosophila Proteins - genetics Evolution, Molecular Gene expression Genetic diversity Insects Likelihood Functions Original Polycomb-Group Proteins - genetics Proteins Selection, Genetic Sequence Analysis, DNA |
title | Adaptive selection and coevolution at the proteins of the Polycomb repressive complexes in Drosophila |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A04%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20selection%20and%20coevolution%20at%20the%20proteins%20of%20the%20Polycomb%20repressive%20complexes%20in%20Drosophila&rft.jtitle=Heredity&rft.au=Calvo-Mart%C3%ADn,%20J%20M&rft.date=2016-02-01&rft.volume=116&rft.issue=2&rft.spage=213&rft.epage=223&rft.pages=213-223&rft.issn=0018-067X&rft.eissn=1365-2540&rft.coden=HDTYAT&rft_id=info:doi/10.1038/hdy.2015.91&rft_dat=%3Cproquest_pubme%3E3919489681%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1756068558&rft_id=info:pmid/26486609&rfr_iscdi=true |