Automatic generation of bioinformatics tools for predicting protein-ligand binding sites

Predictive tools that model protein-ligand binding on demand are needed to promote ligand research in an innovative drug-design environment. However, it takes considerable time and effort to develop predictive tools that can be applied to individual ligands. An automated production pipeline that can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2016-03, Vol.32 (6), p.901-907
Hauptverfasser: Komiyama, Yusuke, Banno, Masaki, Ueki, Kokoro, Saad, Gul, Shimizu, Kentaro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 907
container_issue 6
container_start_page 901
container_title Bioinformatics
container_volume 32
creator Komiyama, Yusuke
Banno, Masaki
Ueki, Kokoro
Saad, Gul
Shimizu, Kentaro
description Predictive tools that model protein-ligand binding on demand are needed to promote ligand research in an innovative drug-design environment. However, it takes considerable time and effort to develop predictive tools that can be applied to individual ligands. An automated production pipeline that can rapidly and efficiently develop user-friendly protein-ligand binding predictive tools would be useful. We developed a system for automatically generating protein-ligand binding predictions. Implementation of this system in a pipeline of Semantic Web technique-based web tools will allow users to specify a ligand and receive the tool within 0.5-1 day. We demonstrated high prediction accuracy for three machine learning algorithms and eight ligands. The source code and web application are freely available for download at http://utprot.net They are implemented in Python and supported on Linux. shimizu@bi.a.u-tokyo.ac.jp Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btv593
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4803387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800505262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-2ef33938865d71bc56d9cf8af3ba76dec4f4d5fd4fc7c496fb33a7f7b00583013</originalsourceid><addsrcrecordid>eNqNUktLAzEYDKJoffwEZY9eVvPcZC-CFF8geFHwFrJ5rJFtUpNU8N-7tVrsSU-ZfJkZ-CYDwDGCZwi25Lzz0QcX00wVr_N5V95ZS7bABJGG11QgtL3GkOyB_ZxfIYQMsmYX7OGGUSYwnYDny0WJXx5Vb4NNI4qhiq7a9K9KjEOuxns1T9Z4XXzoRxiL9aEefK-CGSXBLMfZF5sPwY5TQ7ZH3-cBeLq-epze1vcPN3fTy_taMwRLja0jpCVCNMxw1GnWmFY7oRzpFG-M1dRRw5yhTnNN28Z1hCjueDfuIghE5ABcrHzni25mjbahJDXIefIzlT5kVF5uvgT_Ivv4Lpe5EMFHg9NvgxTfFjYXOfNZ22FQwcZFlhgzghmjtP2TisRXwrjBf1O54JRziOF_qJC2LYZspLIVVaeYc7JuvSeCclkLufltclWLUXfyO6S16qcH5BM47Lup</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1780499205</pqid></control><display><type>article</type><title>Automatic generation of bioinformatics tools for predicting protein-ligand binding sites</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Komiyama, Yusuke ; Banno, Masaki ; Ueki, Kokoro ; Saad, Gul ; Shimizu, Kentaro</creator><creatorcontrib>Komiyama, Yusuke ; Banno, Masaki ; Ueki, Kokoro ; Saad, Gul ; Shimizu, Kentaro</creatorcontrib><description>Predictive tools that model protein-ligand binding on demand are needed to promote ligand research in an innovative drug-design environment. However, it takes considerable time and effort to develop predictive tools that can be applied to individual ligands. An automated production pipeline that can rapidly and efficiently develop user-friendly protein-ligand binding predictive tools would be useful. We developed a system for automatically generating protein-ligand binding predictions. Implementation of this system in a pipeline of Semantic Web technique-based web tools will allow users to specify a ligand and receive the tool within 0.5-1 day. We demonstrated high prediction accuracy for three machine learning algorithms and eight ligands. The source code and web application are freely available for download at http://utprot.net They are implemented in Python and supported on Linux. shimizu@bi.a.u-tokyo.ac.jp Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>ISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>DOI: 10.1093/bioinformatics/btv593</identifier><identifier>PMID: 26545824</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Applications programs ; artificial intelligence ; Automation ; Binding ; Binding Sites ; Bioinformatics ; Computational Biology ; computer software ; drug design ; Internet ; Ligands ; Mathematical models ; Original Papers ; Pipelines ; prediction ; Protein Binding ; Proteins - metabolism ; Semantics ; Software ; world wide web</subject><ispartof>Bioinformatics, 2016-03, Vol.32 (6), p.901-907</ispartof><rights>The Author 2015. Published by Oxford University Press.</rights><rights>The Author 2015. Published by Oxford University Press. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-2ef33938865d71bc56d9cf8af3ba76dec4f4d5fd4fc7c496fb33a7f7b00583013</citedby><cites>FETCH-LOGICAL-c510t-2ef33938865d71bc56d9cf8af3ba76dec4f4d5fd4fc7c496fb33a7f7b00583013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4803387/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4803387/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26545824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Komiyama, Yusuke</creatorcontrib><creatorcontrib>Banno, Masaki</creatorcontrib><creatorcontrib>Ueki, Kokoro</creatorcontrib><creatorcontrib>Saad, Gul</creatorcontrib><creatorcontrib>Shimizu, Kentaro</creatorcontrib><title>Automatic generation of bioinformatics tools for predicting protein-ligand binding sites</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Predictive tools that model protein-ligand binding on demand are needed to promote ligand research in an innovative drug-design environment. However, it takes considerable time and effort to develop predictive tools that can be applied to individual ligands. An automated production pipeline that can rapidly and efficiently develop user-friendly protein-ligand binding predictive tools would be useful. We developed a system for automatically generating protein-ligand binding predictions. Implementation of this system in a pipeline of Semantic Web technique-based web tools will allow users to specify a ligand and receive the tool within 0.5-1 day. We demonstrated high prediction accuracy for three machine learning algorithms and eight ligands. The source code and web application are freely available for download at http://utprot.net They are implemented in Python and supported on Linux. shimizu@bi.a.u-tokyo.ac.jp Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Applications programs</subject><subject>artificial intelligence</subject><subject>Automation</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Bioinformatics</subject><subject>Computational Biology</subject><subject>computer software</subject><subject>drug design</subject><subject>Internet</subject><subject>Ligands</subject><subject>Mathematical models</subject><subject>Original Papers</subject><subject>Pipelines</subject><subject>prediction</subject><subject>Protein Binding</subject><subject>Proteins - metabolism</subject><subject>Semantics</subject><subject>Software</subject><subject>world wide web</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><issn>1460-2059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUktLAzEYDKJoffwEZY9eVvPcZC-CFF8geFHwFrJ5rJFtUpNU8N-7tVrsSU-ZfJkZ-CYDwDGCZwi25Lzz0QcX00wVr_N5V95ZS7bABJGG11QgtL3GkOyB_ZxfIYQMsmYX7OGGUSYwnYDny0WJXx5Vb4NNI4qhiq7a9K9KjEOuxns1T9Z4XXzoRxiL9aEefK-CGSXBLMfZF5sPwY5TQ7ZH3-cBeLq-epze1vcPN3fTy_taMwRLja0jpCVCNMxw1GnWmFY7oRzpFG-M1dRRw5yhTnNN28Z1hCjueDfuIghE5ABcrHzni25mjbahJDXIefIzlT5kVF5uvgT_Ivv4Lpe5EMFHg9NvgxTfFjYXOfNZ22FQwcZFlhgzghmjtP2TisRXwrjBf1O54JRziOF_qJC2LYZspLIVVaeYc7JuvSeCclkLufltclWLUXfyO6S16qcH5BM47Lup</recordid><startdate>20160315</startdate><enddate>20160315</enddate><creator>Komiyama, Yusuke</creator><creator>Banno, Masaki</creator><creator>Ueki, Kokoro</creator><creator>Saad, Gul</creator><creator>Shimizu, Kentaro</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20160315</creationdate><title>Automatic generation of bioinformatics tools for predicting protein-ligand binding sites</title><author>Komiyama, Yusuke ; Banno, Masaki ; Ueki, Kokoro ; Saad, Gul ; Shimizu, Kentaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-2ef33938865d71bc56d9cf8af3ba76dec4f4d5fd4fc7c496fb33a7f7b00583013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Applications programs</topic><topic>artificial intelligence</topic><topic>Automation</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Bioinformatics</topic><topic>Computational Biology</topic><topic>computer software</topic><topic>drug design</topic><topic>Internet</topic><topic>Ligands</topic><topic>Mathematical models</topic><topic>Original Papers</topic><topic>Pipelines</topic><topic>prediction</topic><topic>Protein Binding</topic><topic>Proteins - metabolism</topic><topic>Semantics</topic><topic>Software</topic><topic>world wide web</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Komiyama, Yusuke</creatorcontrib><creatorcontrib>Banno, Masaki</creatorcontrib><creatorcontrib>Ueki, Kokoro</creatorcontrib><creatorcontrib>Saad, Gul</creatorcontrib><creatorcontrib>Shimizu, Kentaro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Komiyama, Yusuke</au><au>Banno, Masaki</au><au>Ueki, Kokoro</au><au>Saad, Gul</au><au>Shimizu, Kentaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic generation of bioinformatics tools for predicting protein-ligand binding sites</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2016-03-15</date><risdate>2016</risdate><volume>32</volume><issue>6</issue><spage>901</spage><epage>907</epage><pages>901-907</pages><issn>1367-4803</issn><issn>1460-2059</issn><eissn>1367-4811</eissn><eissn>1460-2059</eissn><abstract>Predictive tools that model protein-ligand binding on demand are needed to promote ligand research in an innovative drug-design environment. However, it takes considerable time and effort to develop predictive tools that can be applied to individual ligands. An automated production pipeline that can rapidly and efficiently develop user-friendly protein-ligand binding predictive tools would be useful. We developed a system for automatically generating protein-ligand binding predictions. Implementation of this system in a pipeline of Semantic Web technique-based web tools will allow users to specify a ligand and receive the tool within 0.5-1 day. We demonstrated high prediction accuracy for three machine learning algorithms and eight ligands. The source code and web application are freely available for download at http://utprot.net They are implemented in Python and supported on Linux. shimizu@bi.a.u-tokyo.ac.jp Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>26545824</pmid><doi>10.1093/bioinformatics/btv593</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2016-03, Vol.32 (6), p.901-907
issn 1367-4803
1460-2059
1367-4811
1460-2059
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4803387
source Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Applications programs
artificial intelligence
Automation
Binding
Binding Sites
Bioinformatics
Computational Biology
computer software
drug design
Internet
Ligands
Mathematical models
Original Papers
Pipelines
prediction
Protein Binding
Proteins - metabolism
Semantics
Software
world wide web
title Automatic generation of bioinformatics tools for predicting protein-ligand binding sites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20generation%20of%20bioinformatics%20tools%20for%20predicting%20protein-ligand%20binding%20sites&rft.jtitle=Bioinformatics&rft.au=Komiyama,%20Yusuke&rft.date=2016-03-15&rft.volume=32&rft.issue=6&rft.spage=901&rft.epage=907&rft.pages=901-907&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btv593&rft_dat=%3Cproquest_pubme%3E1800505262%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1780499205&rft_id=info:pmid/26545824&rfr_iscdi=true