A hybrid recognition system for off-line handwritten characters
Computer based pattern recognition is a process that involves several sub-processes, including pre-processing, feature extraction, feature selection, and classification. Feature extraction is the estimation of certain attributes of the target patterns. Selection of the right set of features is the m...
Gespeichert in:
Veröffentlicht in: | SpringerPlus 2016-03, Vol.5 (1), p.357-357, Article 357 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 357 |
---|---|
container_issue | 1 |
container_start_page | 357 |
container_title | SpringerPlus |
container_volume | 5 |
creator | Katiyar, Gauri Mehfuz, Shabana |
description | Computer based pattern recognition is a process that involves several sub-processes, including pre-processing, feature extraction, feature selection, and classification. Feature extraction is the estimation of certain attributes of the target patterns. Selection of the right set of features is the most crucial and complex part of building a pattern recognition system. In this work we have combined multiple features extracted using seven different approaches. The novelty of this approach is to achieve better accuracy and reduced computational time for recognition of handwritten characters using Genetic Algorithm which optimizes the number of features along with a simple and adaptive Multi Layer Perceptron classifier. Experiments have been performed using standard database of CEDAR (Centre of Excellence for Document Analysis and Recognition) for English alphabet. The experimental results obtained on this database demonstrate the effectiveness of this system. |
doi_str_mv | 10.1186/s40064-016-1775-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4801835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1780811236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-48f769816d20453de04182c32c210661effeb2f9a14c9ec96f0b340d739ec4113</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMoKuoP8CILXrysZpI02b0oUvwCwYueQ5qdtJFtoslW6b83UpUqmEsyzDPvzOQl5BDoKUAjz7KgVIqagqxBqVGtNsgug5bX0FDYXHvvkIOcn2k5UoFQdJvsMEWl5IrukovLaracJN9VCW2cBj_4GKq8zAPOKxdTFZ2rex-wmpnQvSc_DBgqOzPJ2AFT3idbzvQZD77uPfJ0ffU4vq3vH27uxpf3tS0dh1o0Tsm2AdkxKka8QyqgYZYzy6CMAugcTphrDQjbom2loxMuaKd4iQQA3yPnK92XxWSOncUwJNPrl-TnJi11NF7_zgQ_09P4pkX5gYaPisDJl0CKrwvMg577bLHvTcC4yBpUQxsAxmVBj_-gz3GRQlmvUEooDrKlhYIVZVPMOaH7GQao_nRIrxzSxaHPupFWpeZofYufim8_CsBWQC6pMMW01vpf1Q9Chpry</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1774731690</pqid></control><display><type>article</type><title>A hybrid recognition system for off-line handwritten characters</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Katiyar, Gauri ; Mehfuz, Shabana</creator><creatorcontrib>Katiyar, Gauri ; Mehfuz, Shabana</creatorcontrib><description>Computer based pattern recognition is a process that involves several sub-processes, including pre-processing, feature extraction, feature selection, and classification. Feature extraction is the estimation of certain attributes of the target patterns. Selection of the right set of features is the most crucial and complex part of building a pattern recognition system. In this work we have combined multiple features extracted using seven different approaches. The novelty of this approach is to achieve better accuracy and reduced computational time for recognition of handwritten characters using Genetic Algorithm which optimizes the number of features along with a simple and adaptive Multi Layer Perceptron classifier. Experiments have been performed using standard database of CEDAR (Centre of Excellence for Document Analysis and Recognition) for English alphabet. The experimental results obtained on this database demonstrate the effectiveness of this system.</description><identifier>ISSN: 2193-1801</identifier><identifier>EISSN: 2193-1801</identifier><identifier>DOI: 10.1186/s40064-016-1775-7</identifier><identifier>PMID: 27066370</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Computer Science ; Humanities and Social Sciences ; multidisciplinary ; Pattern recognition ; Science ; Science (multidisciplinary)</subject><ispartof>SpringerPlus, 2016-03, Vol.5 (1), p.357-357, Article 357</ispartof><rights>Katiyar and Mehfuz. 2016</rights><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-48f769816d20453de04182c32c210661effeb2f9a14c9ec96f0b340d739ec4113</citedby><cites>FETCH-LOGICAL-c470t-48f769816d20453de04182c32c210661effeb2f9a14c9ec96f0b340d739ec4113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801835/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801835/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27066370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Katiyar, Gauri</creatorcontrib><creatorcontrib>Mehfuz, Shabana</creatorcontrib><title>A hybrid recognition system for off-line handwritten characters</title><title>SpringerPlus</title><addtitle>SpringerPlus</addtitle><addtitle>Springerplus</addtitle><description>Computer based pattern recognition is a process that involves several sub-processes, including pre-processing, feature extraction, feature selection, and classification. Feature extraction is the estimation of certain attributes of the target patterns. Selection of the right set of features is the most crucial and complex part of building a pattern recognition system. In this work we have combined multiple features extracted using seven different approaches. The novelty of this approach is to achieve better accuracy and reduced computational time for recognition of handwritten characters using Genetic Algorithm which optimizes the number of features along with a simple and adaptive Multi Layer Perceptron classifier. Experiments have been performed using standard database of CEDAR (Centre of Excellence for Document Analysis and Recognition) for English alphabet. The experimental results obtained on this database demonstrate the effectiveness of this system.</description><subject>Computer Science</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Pattern recognition</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2193-1801</issn><issn>2193-1801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU1LAzEQhoMoKuoP8CILXrysZpI02b0oUvwCwYueQ5qdtJFtoslW6b83UpUqmEsyzDPvzOQl5BDoKUAjz7KgVIqagqxBqVGtNsgug5bX0FDYXHvvkIOcn2k5UoFQdJvsMEWl5IrukovLaracJN9VCW2cBj_4GKq8zAPOKxdTFZ2rex-wmpnQvSc_DBgqOzPJ2AFT3idbzvQZD77uPfJ0ffU4vq3vH27uxpf3tS0dh1o0Tsm2AdkxKka8QyqgYZYzy6CMAugcTphrDQjbom2loxMuaKd4iQQA3yPnK92XxWSOncUwJNPrl-TnJi11NF7_zgQ_09P4pkX5gYaPisDJl0CKrwvMg577bLHvTcC4yBpUQxsAxmVBj_-gz3GRQlmvUEooDrKlhYIVZVPMOaH7GQao_nRIrxzSxaHPupFWpeZofYufim8_CsBWQC6pMMW01vpf1Q9Chpry</recordid><startdate>20160322</startdate><enddate>20160322</enddate><creator>Katiyar, Gauri</creator><creator>Mehfuz, Shabana</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160322</creationdate><title>A hybrid recognition system for off-line handwritten characters</title><author>Katiyar, Gauri ; Mehfuz, Shabana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-48f769816d20453de04182c32c210661effeb2f9a14c9ec96f0b340d739ec4113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer Science</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Pattern recognition</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katiyar, Gauri</creatorcontrib><creatorcontrib>Mehfuz, Shabana</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>SpringerPlus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katiyar, Gauri</au><au>Mehfuz, Shabana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid recognition system for off-line handwritten characters</atitle><jtitle>SpringerPlus</jtitle><stitle>SpringerPlus</stitle><addtitle>Springerplus</addtitle><date>2016-03-22</date><risdate>2016</risdate><volume>5</volume><issue>1</issue><spage>357</spage><epage>357</epage><pages>357-357</pages><artnum>357</artnum><issn>2193-1801</issn><eissn>2193-1801</eissn><abstract>Computer based pattern recognition is a process that involves several sub-processes, including pre-processing, feature extraction, feature selection, and classification. Feature extraction is the estimation of certain attributes of the target patterns. Selection of the right set of features is the most crucial and complex part of building a pattern recognition system. In this work we have combined multiple features extracted using seven different approaches. The novelty of this approach is to achieve better accuracy and reduced computational time for recognition of handwritten characters using Genetic Algorithm which optimizes the number of features along with a simple and adaptive Multi Layer Perceptron classifier. Experiments have been performed using standard database of CEDAR (Centre of Excellence for Document Analysis and Recognition) for English alphabet. The experimental results obtained on this database demonstrate the effectiveness of this system.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>27066370</pmid><doi>10.1186/s40064-016-1775-7</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2193-1801 |
ispartof | SpringerPlus, 2016-03, Vol.5 (1), p.357-357, Article 357 |
issn | 2193-1801 2193-1801 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4801835 |
source | EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access; Springer Nature OA Free Journals |
subjects | Computer Science Humanities and Social Sciences multidisciplinary Pattern recognition Science Science (multidisciplinary) |
title | A hybrid recognition system for off-line handwritten characters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20recognition%20system%20for%20off-line%20handwritten%20characters&rft.jtitle=SpringerPlus&rft.au=Katiyar,%20Gauri&rft.date=2016-03-22&rft.volume=5&rft.issue=1&rft.spage=357&rft.epage=357&rft.pages=357-357&rft.artnum=357&rft.issn=2193-1801&rft.eissn=2193-1801&rft_id=info:doi/10.1186/s40064-016-1775-7&rft_dat=%3Cproquest_pubme%3E1780811236%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1774731690&rft_id=info:pmid/27066370&rfr_iscdi=true |