GeneAnalytics: An Integrative Gene Set Analysis Tool for Next Generation Sequencing, RNAseq and Microarray Data
Postgenomics data are produced in large volumes by life sciences and clinical applications of novel omics diagnostics and therapeutics for precision medicine. To move from "data-to-knowledge-to-innovation," a crucial missing step in the current era is, however, our limited understanding of...
Gespeichert in:
Veröffentlicht in: | Omics (Larchmont, N.Y.) N.Y.), 2016-03, Vol.20 (3), p.139-151 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 151 |
---|---|
container_issue | 3 |
container_start_page | 139 |
container_title | Omics (Larchmont, N.Y.) |
container_volume | 20 |
creator | Ben-Ari Fuchs, Shani Lieder, Iris Stelzer, Gil Mazor, Yaron Buzhor, Ella Kaplan, Sergey Bogoch, Yoel Plaschkes, Inbar Shitrit, Alina Rappaport, Noa Kohn, Asher Edgar, Ron Shenhav, Liraz Safran, Marilyn Lancet, Doron Guan-Golan, Yaron Warshawsky, David Shtrichman, Ronit |
description | Postgenomics data are produced in large volumes by life sciences and clinical applications of novel omics diagnostics and therapeutics for precision medicine. To move from "data-to-knowledge-to-innovation," a crucial missing step in the current era is, however, our limited understanding of biological and clinical contexts associated with data. Prominent among the emerging remedies to this challenge are the gene set enrichment tools. This study reports on GeneAnalytics™ ( geneanalytics.genecards.org ), a comprehensive and easy-to-apply gene set analysis tool for rapid contextualization of expression patterns and functional signatures embedded in the postgenomics Big Data domains, such as Next Generation Sequencing (NGS), RNAseq, and microarray experiments. GeneAnalytics' differentiating features include in-depth evidence-based scoring algorithms, an intuitive user interface and proprietary unified data. GeneAnalytics employs the LifeMap Science's GeneCards suite, including the GeneCards®--the human gene database; the MalaCards-the human diseases database; and the PathCards--the biological pathways database. Expression-based analysis in GeneAnalytics relies on the LifeMap Discovery®--the embryonic development and stem cells database, which includes manually curated expression data for normal and diseased tissues, enabling advanced matching algorithm for gene-tissue association. This assists in evaluating differentiation protocols and discovering biomarkers for tissues and cells. Results are directly linked to gene, disease, or cell "cards" in the GeneCards suite. Future developments aim to enhance the GeneAnalytics algorithm as well as visualizations, employing varied graphical display items. Such attributes make GeneAnalytics a broadly applicable postgenomics data analyses and interpretation tool for translation of data to knowledge-based innovation in various Big Data fields such as precision medicine, ecogenomics, nutrigenomics, pharmacogenomics, vaccinomics, and others yet to emerge on the postgenomics horizon. |
doi_str_mv | 10.1089/omi.2015.0168 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4799705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1774526805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-1020c40a57f20c1674363d1b618fbd9bf1dd7451aee5a11196cdf60628edb5ad3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS1ERUvhyBX5yKHZzjiJ7XBAWhVaKpUiQTlbTuwsRlm7tb0V--_rbEtFTz3NjN6np5l5hLxDWCDI7jis3YIBtgtALl-QA2xbUUkEeDn3Na9YjbBPXqf0B4AhZ_Urss94J-syHZBwZr1dej1tsxvSR7r09Nxnu4o6u1tLZ5X-tJnukOQSvQphomOI9NL-zTt9RoMv1M3G-sH51RH9cblM9oZqb-g3N8SgY9Rb-lln_YbsjXpK9u1DPSS_Tr9cnXytLr6fnZ8sL6qhYZArBAZDA7oVY2mQi6bmtcGeoxx70_UjGiOaFrW1rUbEjg9m5MCZtKZvtakPyad73-tNv7ZmsD5HPanr6NY6blXQTj1VvPutVuFWNaLrBLTF4MODQQzlsJTV2qXBTpP2NmySQsmElAI5PI-Ksirjcuda3aPlKSlFOz5uhKDmPFXJU815qjnPwr___4xH-l-A9R3nPpyE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1774526805</pqid></control><display><type>article</type><title>GeneAnalytics: An Integrative Gene Set Analysis Tool for Next Generation Sequencing, RNAseq and Microarray Data</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Ben-Ari Fuchs, Shani ; Lieder, Iris ; Stelzer, Gil ; Mazor, Yaron ; Buzhor, Ella ; Kaplan, Sergey ; Bogoch, Yoel ; Plaschkes, Inbar ; Shitrit, Alina ; Rappaport, Noa ; Kohn, Asher ; Edgar, Ron ; Shenhav, Liraz ; Safran, Marilyn ; Lancet, Doron ; Guan-Golan, Yaron ; Warshawsky, David ; Shtrichman, Ronit</creator><creatorcontrib>Ben-Ari Fuchs, Shani ; Lieder, Iris ; Stelzer, Gil ; Mazor, Yaron ; Buzhor, Ella ; Kaplan, Sergey ; Bogoch, Yoel ; Plaschkes, Inbar ; Shitrit, Alina ; Rappaport, Noa ; Kohn, Asher ; Edgar, Ron ; Shenhav, Liraz ; Safran, Marilyn ; Lancet, Doron ; Guan-Golan, Yaron ; Warshawsky, David ; Shtrichman, Ronit</creatorcontrib><description>Postgenomics data are produced in large volumes by life sciences and clinical applications of novel omics diagnostics and therapeutics for precision medicine. To move from "data-to-knowledge-to-innovation," a crucial missing step in the current era is, however, our limited understanding of biological and clinical contexts associated with data. Prominent among the emerging remedies to this challenge are the gene set enrichment tools. This study reports on GeneAnalytics™ ( geneanalytics.genecards.org ), a comprehensive and easy-to-apply gene set analysis tool for rapid contextualization of expression patterns and functional signatures embedded in the postgenomics Big Data domains, such as Next Generation Sequencing (NGS), RNAseq, and microarray experiments. GeneAnalytics' differentiating features include in-depth evidence-based scoring algorithms, an intuitive user interface and proprietary unified data. GeneAnalytics employs the LifeMap Science's GeneCards suite, including the GeneCards®--the human gene database; the MalaCards-the human diseases database; and the PathCards--the biological pathways database. Expression-based analysis in GeneAnalytics relies on the LifeMap Discovery®--the embryonic development and stem cells database, which includes manually curated expression data for normal and diseased tissues, enabling advanced matching algorithm for gene-tissue association. This assists in evaluating differentiation protocols and discovering biomarkers for tissues and cells. Results are directly linked to gene, disease, or cell "cards" in the GeneCards suite. Future developments aim to enhance the GeneAnalytics algorithm as well as visualizations, employing varied graphical display items. Such attributes make GeneAnalytics a broadly applicable postgenomics data analyses and interpretation tool for translation of data to knowledge-based innovation in various Big Data fields such as precision medicine, ecogenomics, nutrigenomics, pharmacogenomics, vaccinomics, and others yet to emerge on the postgenomics horizon.</description><identifier>ISSN: 1536-2310</identifier><identifier>EISSN: 1557-8100</identifier><identifier>DOI: 10.1089/omi.2015.0168</identifier><identifier>PMID: 26983021</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Algorithms ; Computational Biology - methods ; Data Mining ; Databases, Factual ; Databases, Genetic ; Gene Regulatory Networks ; Genome, Human ; High-Throughput Nucleotide Sequencing - statistics & numerical data ; Humans ; Metabolic Networks and Pathways - genetics ; Microarray Analysis - statistics & numerical data ; Original ; Software</subject><ispartof>Omics (Larchmont, N.Y.), 2016-03, Vol.20 (3), p.139-151</ispartof><rights>Shani Ben-Ari Fuchs, et al., 2016. Published by Mary Ann Liebert, Inc. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-1020c40a57f20c1674363d1b618fbd9bf1dd7451aee5a11196cdf60628edb5ad3</citedby><cites>FETCH-LOGICAL-c420t-1020c40a57f20c1674363d1b618fbd9bf1dd7451aee5a11196cdf60628edb5ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26983021$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ben-Ari Fuchs, Shani</creatorcontrib><creatorcontrib>Lieder, Iris</creatorcontrib><creatorcontrib>Stelzer, Gil</creatorcontrib><creatorcontrib>Mazor, Yaron</creatorcontrib><creatorcontrib>Buzhor, Ella</creatorcontrib><creatorcontrib>Kaplan, Sergey</creatorcontrib><creatorcontrib>Bogoch, Yoel</creatorcontrib><creatorcontrib>Plaschkes, Inbar</creatorcontrib><creatorcontrib>Shitrit, Alina</creatorcontrib><creatorcontrib>Rappaport, Noa</creatorcontrib><creatorcontrib>Kohn, Asher</creatorcontrib><creatorcontrib>Edgar, Ron</creatorcontrib><creatorcontrib>Shenhav, Liraz</creatorcontrib><creatorcontrib>Safran, Marilyn</creatorcontrib><creatorcontrib>Lancet, Doron</creatorcontrib><creatorcontrib>Guan-Golan, Yaron</creatorcontrib><creatorcontrib>Warshawsky, David</creatorcontrib><creatorcontrib>Shtrichman, Ronit</creatorcontrib><title>GeneAnalytics: An Integrative Gene Set Analysis Tool for Next Generation Sequencing, RNAseq and Microarray Data</title><title>Omics (Larchmont, N.Y.)</title><addtitle>OMICS</addtitle><description>Postgenomics data are produced in large volumes by life sciences and clinical applications of novel omics diagnostics and therapeutics for precision medicine. To move from "data-to-knowledge-to-innovation," a crucial missing step in the current era is, however, our limited understanding of biological and clinical contexts associated with data. Prominent among the emerging remedies to this challenge are the gene set enrichment tools. This study reports on GeneAnalytics™ ( geneanalytics.genecards.org ), a comprehensive and easy-to-apply gene set analysis tool for rapid contextualization of expression patterns and functional signatures embedded in the postgenomics Big Data domains, such as Next Generation Sequencing (NGS), RNAseq, and microarray experiments. GeneAnalytics' differentiating features include in-depth evidence-based scoring algorithms, an intuitive user interface and proprietary unified data. GeneAnalytics employs the LifeMap Science's GeneCards suite, including the GeneCards®--the human gene database; the MalaCards-the human diseases database; and the PathCards--the biological pathways database. Expression-based analysis in GeneAnalytics relies on the LifeMap Discovery®--the embryonic development and stem cells database, which includes manually curated expression data for normal and diseased tissues, enabling advanced matching algorithm for gene-tissue association. This assists in evaluating differentiation protocols and discovering biomarkers for tissues and cells. Results are directly linked to gene, disease, or cell "cards" in the GeneCards suite. Future developments aim to enhance the GeneAnalytics algorithm as well as visualizations, employing varied graphical display items. Such attributes make GeneAnalytics a broadly applicable postgenomics data analyses and interpretation tool for translation of data to knowledge-based innovation in various Big Data fields such as precision medicine, ecogenomics, nutrigenomics, pharmacogenomics, vaccinomics, and others yet to emerge on the postgenomics horizon.</description><subject>Algorithms</subject><subject>Computational Biology - methods</subject><subject>Data Mining</subject><subject>Databases, Factual</subject><subject>Databases, Genetic</subject><subject>Gene Regulatory Networks</subject><subject>Genome, Human</subject><subject>High-Throughput Nucleotide Sequencing - statistics & numerical data</subject><subject>Humans</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Microarray Analysis - statistics & numerical data</subject><subject>Original</subject><subject>Software</subject><issn>1536-2310</issn><issn>1557-8100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS1ERUvhyBX5yKHZzjiJ7XBAWhVaKpUiQTlbTuwsRlm7tb0V--_rbEtFTz3NjN6np5l5hLxDWCDI7jis3YIBtgtALl-QA2xbUUkEeDn3Na9YjbBPXqf0B4AhZ_Urss94J-syHZBwZr1dej1tsxvSR7r09Nxnu4o6u1tLZ5X-tJnukOQSvQphomOI9NL-zTt9RoMv1M3G-sH51RH9cblM9oZqb-g3N8SgY9Rb-lln_YbsjXpK9u1DPSS_Tr9cnXytLr6fnZ8sL6qhYZArBAZDA7oVY2mQi6bmtcGeoxx70_UjGiOaFrW1rUbEjg9m5MCZtKZvtakPyad73-tNv7ZmsD5HPanr6NY6blXQTj1VvPutVuFWNaLrBLTF4MODQQzlsJTV2qXBTpP2NmySQsmElAI5PI-Ksirjcuda3aPlKSlFOz5uhKDmPFXJU815qjnPwr___4xH-l-A9R3nPpyE</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Ben-Ari Fuchs, Shani</creator><creator>Lieder, Iris</creator><creator>Stelzer, Gil</creator><creator>Mazor, Yaron</creator><creator>Buzhor, Ella</creator><creator>Kaplan, Sergey</creator><creator>Bogoch, Yoel</creator><creator>Plaschkes, Inbar</creator><creator>Shitrit, Alina</creator><creator>Rappaport, Noa</creator><creator>Kohn, Asher</creator><creator>Edgar, Ron</creator><creator>Shenhav, Liraz</creator><creator>Safran, Marilyn</creator><creator>Lancet, Doron</creator><creator>Guan-Golan, Yaron</creator><creator>Warshawsky, David</creator><creator>Shtrichman, Ronit</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201603</creationdate><title>GeneAnalytics: An Integrative Gene Set Analysis Tool for Next Generation Sequencing, RNAseq and Microarray Data</title><author>Ben-Ari Fuchs, Shani ; Lieder, Iris ; Stelzer, Gil ; Mazor, Yaron ; Buzhor, Ella ; Kaplan, Sergey ; Bogoch, Yoel ; Plaschkes, Inbar ; Shitrit, Alina ; Rappaport, Noa ; Kohn, Asher ; Edgar, Ron ; Shenhav, Liraz ; Safran, Marilyn ; Lancet, Doron ; Guan-Golan, Yaron ; Warshawsky, David ; Shtrichman, Ronit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-1020c40a57f20c1674363d1b618fbd9bf1dd7451aee5a11196cdf60628edb5ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Computational Biology - methods</topic><topic>Data Mining</topic><topic>Databases, Factual</topic><topic>Databases, Genetic</topic><topic>Gene Regulatory Networks</topic><topic>Genome, Human</topic><topic>High-Throughput Nucleotide Sequencing - statistics & numerical data</topic><topic>Humans</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Microarray Analysis - statistics & numerical data</topic><topic>Original</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben-Ari Fuchs, Shani</creatorcontrib><creatorcontrib>Lieder, Iris</creatorcontrib><creatorcontrib>Stelzer, Gil</creatorcontrib><creatorcontrib>Mazor, Yaron</creatorcontrib><creatorcontrib>Buzhor, Ella</creatorcontrib><creatorcontrib>Kaplan, Sergey</creatorcontrib><creatorcontrib>Bogoch, Yoel</creatorcontrib><creatorcontrib>Plaschkes, Inbar</creatorcontrib><creatorcontrib>Shitrit, Alina</creatorcontrib><creatorcontrib>Rappaport, Noa</creatorcontrib><creatorcontrib>Kohn, Asher</creatorcontrib><creatorcontrib>Edgar, Ron</creatorcontrib><creatorcontrib>Shenhav, Liraz</creatorcontrib><creatorcontrib>Safran, Marilyn</creatorcontrib><creatorcontrib>Lancet, Doron</creatorcontrib><creatorcontrib>Guan-Golan, Yaron</creatorcontrib><creatorcontrib>Warshawsky, David</creatorcontrib><creatorcontrib>Shtrichman, Ronit</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Omics (Larchmont, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben-Ari Fuchs, Shani</au><au>Lieder, Iris</au><au>Stelzer, Gil</au><au>Mazor, Yaron</au><au>Buzhor, Ella</au><au>Kaplan, Sergey</au><au>Bogoch, Yoel</au><au>Plaschkes, Inbar</au><au>Shitrit, Alina</au><au>Rappaport, Noa</au><au>Kohn, Asher</au><au>Edgar, Ron</au><au>Shenhav, Liraz</au><au>Safran, Marilyn</au><au>Lancet, Doron</au><au>Guan-Golan, Yaron</au><au>Warshawsky, David</au><au>Shtrichman, Ronit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GeneAnalytics: An Integrative Gene Set Analysis Tool for Next Generation Sequencing, RNAseq and Microarray Data</atitle><jtitle>Omics (Larchmont, N.Y.)</jtitle><addtitle>OMICS</addtitle><date>2016-03</date><risdate>2016</risdate><volume>20</volume><issue>3</issue><spage>139</spage><epage>151</epage><pages>139-151</pages><issn>1536-2310</issn><eissn>1557-8100</eissn><abstract>Postgenomics data are produced in large volumes by life sciences and clinical applications of novel omics diagnostics and therapeutics for precision medicine. To move from "data-to-knowledge-to-innovation," a crucial missing step in the current era is, however, our limited understanding of biological and clinical contexts associated with data. Prominent among the emerging remedies to this challenge are the gene set enrichment tools. This study reports on GeneAnalytics™ ( geneanalytics.genecards.org ), a comprehensive and easy-to-apply gene set analysis tool for rapid contextualization of expression patterns and functional signatures embedded in the postgenomics Big Data domains, such as Next Generation Sequencing (NGS), RNAseq, and microarray experiments. GeneAnalytics' differentiating features include in-depth evidence-based scoring algorithms, an intuitive user interface and proprietary unified data. GeneAnalytics employs the LifeMap Science's GeneCards suite, including the GeneCards®--the human gene database; the MalaCards-the human diseases database; and the PathCards--the biological pathways database. Expression-based analysis in GeneAnalytics relies on the LifeMap Discovery®--the embryonic development and stem cells database, which includes manually curated expression data for normal and diseased tissues, enabling advanced matching algorithm for gene-tissue association. This assists in evaluating differentiation protocols and discovering biomarkers for tissues and cells. Results are directly linked to gene, disease, or cell "cards" in the GeneCards suite. Future developments aim to enhance the GeneAnalytics algorithm as well as visualizations, employing varied graphical display items. Such attributes make GeneAnalytics a broadly applicable postgenomics data analyses and interpretation tool for translation of data to knowledge-based innovation in various Big Data fields such as precision medicine, ecogenomics, nutrigenomics, pharmacogenomics, vaccinomics, and others yet to emerge on the postgenomics horizon.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>26983021</pmid><doi>10.1089/omi.2015.0168</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-2310 |
ispartof | Omics (Larchmont, N.Y.), 2016-03, Vol.20 (3), p.139-151 |
issn | 1536-2310 1557-8100 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4799705 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Algorithms Computational Biology - methods Data Mining Databases, Factual Databases, Genetic Gene Regulatory Networks Genome, Human High-Throughput Nucleotide Sequencing - statistics & numerical data Humans Metabolic Networks and Pathways - genetics Microarray Analysis - statistics & numerical data Original Software |
title | GeneAnalytics: An Integrative Gene Set Analysis Tool for Next Generation Sequencing, RNAseq and Microarray Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A05%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GeneAnalytics:%20An%20Integrative%20Gene%20Set%20Analysis%20Tool%20for%20Next%20Generation%20Sequencing,%20RNAseq%20and%20Microarray%20Data&rft.jtitle=Omics%20(Larchmont,%20N.Y.)&rft.au=Ben-Ari%20Fuchs,%20Shani&rft.date=2016-03&rft.volume=20&rft.issue=3&rft.spage=139&rft.epage=151&rft.pages=139-151&rft.issn=1536-2310&rft.eissn=1557-8100&rft_id=info:doi/10.1089/omi.2015.0168&rft_dat=%3Cproquest_pubme%3E1774526805%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1774526805&rft_id=info:pmid/26983021&rfr_iscdi=true |