GeneAnalytics: An Integrative Gene Set Analysis Tool for Next Generation Sequencing, RNAseq and Microarray Data

Postgenomics data are produced in large volumes by life sciences and clinical applications of novel omics diagnostics and therapeutics for precision medicine. To move from "data-to-knowledge-to-innovation," a crucial missing step in the current era is, however, our limited understanding of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Omics (Larchmont, N.Y.) N.Y.), 2016-03, Vol.20 (3), p.139-151
Hauptverfasser: Ben-Ari Fuchs, Shani, Lieder, Iris, Stelzer, Gil, Mazor, Yaron, Buzhor, Ella, Kaplan, Sergey, Bogoch, Yoel, Plaschkes, Inbar, Shitrit, Alina, Rappaport, Noa, Kohn, Asher, Edgar, Ron, Shenhav, Liraz, Safran, Marilyn, Lancet, Doron, Guan-Golan, Yaron, Warshawsky, David, Shtrichman, Ronit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 151
container_issue 3
container_start_page 139
container_title Omics (Larchmont, N.Y.)
container_volume 20
creator Ben-Ari Fuchs, Shani
Lieder, Iris
Stelzer, Gil
Mazor, Yaron
Buzhor, Ella
Kaplan, Sergey
Bogoch, Yoel
Plaschkes, Inbar
Shitrit, Alina
Rappaport, Noa
Kohn, Asher
Edgar, Ron
Shenhav, Liraz
Safran, Marilyn
Lancet, Doron
Guan-Golan, Yaron
Warshawsky, David
Shtrichman, Ronit
description Postgenomics data are produced in large volumes by life sciences and clinical applications of novel omics diagnostics and therapeutics for precision medicine. To move from "data-to-knowledge-to-innovation," a crucial missing step in the current era is, however, our limited understanding of biological and clinical contexts associated with data. Prominent among the emerging remedies to this challenge are the gene set enrichment tools. This study reports on GeneAnalytics™ ( geneanalytics.genecards.org ), a comprehensive and easy-to-apply gene set analysis tool for rapid contextualization of expression patterns and functional signatures embedded in the postgenomics Big Data domains, such as Next Generation Sequencing (NGS), RNAseq, and microarray experiments. GeneAnalytics' differentiating features include in-depth evidence-based scoring algorithms, an intuitive user interface and proprietary unified data. GeneAnalytics employs the LifeMap Science's GeneCards suite, including the GeneCards®--the human gene database; the MalaCards-the human diseases database; and the PathCards--the biological pathways database. Expression-based analysis in GeneAnalytics relies on the LifeMap Discovery®--the embryonic development and stem cells database, which includes manually curated expression data for normal and diseased tissues, enabling advanced matching algorithm for gene-tissue association. This assists in evaluating differentiation protocols and discovering biomarkers for tissues and cells. Results are directly linked to gene, disease, or cell "cards" in the GeneCards suite. Future developments aim to enhance the GeneAnalytics algorithm as well as visualizations, employing varied graphical display items. Such attributes make GeneAnalytics a broadly applicable postgenomics data analyses and interpretation tool for translation of data to knowledge-based innovation in various Big Data fields such as precision medicine, ecogenomics, nutrigenomics, pharmacogenomics, vaccinomics, and others yet to emerge on the postgenomics horizon.
doi_str_mv 10.1089/omi.2015.0168
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4799705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1774526805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-1020c40a57f20c1674363d1b618fbd9bf1dd7451aee5a11196cdf60628edb5ad3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS1ERUvhyBX5yKHZzjiJ7XBAWhVaKpUiQTlbTuwsRlm7tb0V--_rbEtFTz3NjN6np5l5hLxDWCDI7jis3YIBtgtALl-QA2xbUUkEeDn3Na9YjbBPXqf0B4AhZ_Urss94J-syHZBwZr1dej1tsxvSR7r09Nxnu4o6u1tLZ5X-tJnukOQSvQphomOI9NL-zTt9RoMv1M3G-sH51RH9cblM9oZqb-g3N8SgY9Rb-lln_YbsjXpK9u1DPSS_Tr9cnXytLr6fnZ8sL6qhYZArBAZDA7oVY2mQi6bmtcGeoxx70_UjGiOaFrW1rUbEjg9m5MCZtKZvtakPyad73-tNv7ZmsD5HPanr6NY6blXQTj1VvPutVuFWNaLrBLTF4MODQQzlsJTV2qXBTpP2NmySQsmElAI5PI-Ksirjcuda3aPlKSlFOz5uhKDmPFXJU815qjnPwr___4xH-l-A9R3nPpyE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1774526805</pqid></control><display><type>article</type><title>GeneAnalytics: An Integrative Gene Set Analysis Tool for Next Generation Sequencing, RNAseq and Microarray Data</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Ben-Ari Fuchs, Shani ; Lieder, Iris ; Stelzer, Gil ; Mazor, Yaron ; Buzhor, Ella ; Kaplan, Sergey ; Bogoch, Yoel ; Plaschkes, Inbar ; Shitrit, Alina ; Rappaport, Noa ; Kohn, Asher ; Edgar, Ron ; Shenhav, Liraz ; Safran, Marilyn ; Lancet, Doron ; Guan-Golan, Yaron ; Warshawsky, David ; Shtrichman, Ronit</creator><creatorcontrib>Ben-Ari Fuchs, Shani ; Lieder, Iris ; Stelzer, Gil ; Mazor, Yaron ; Buzhor, Ella ; Kaplan, Sergey ; Bogoch, Yoel ; Plaschkes, Inbar ; Shitrit, Alina ; Rappaport, Noa ; Kohn, Asher ; Edgar, Ron ; Shenhav, Liraz ; Safran, Marilyn ; Lancet, Doron ; Guan-Golan, Yaron ; Warshawsky, David ; Shtrichman, Ronit</creatorcontrib><description>Postgenomics data are produced in large volumes by life sciences and clinical applications of novel omics diagnostics and therapeutics for precision medicine. To move from "data-to-knowledge-to-innovation," a crucial missing step in the current era is, however, our limited understanding of biological and clinical contexts associated with data. Prominent among the emerging remedies to this challenge are the gene set enrichment tools. This study reports on GeneAnalytics™ ( geneanalytics.genecards.org ), a comprehensive and easy-to-apply gene set analysis tool for rapid contextualization of expression patterns and functional signatures embedded in the postgenomics Big Data domains, such as Next Generation Sequencing (NGS), RNAseq, and microarray experiments. GeneAnalytics' differentiating features include in-depth evidence-based scoring algorithms, an intuitive user interface and proprietary unified data. GeneAnalytics employs the LifeMap Science's GeneCards suite, including the GeneCards®--the human gene database; the MalaCards-the human diseases database; and the PathCards--the biological pathways database. Expression-based analysis in GeneAnalytics relies on the LifeMap Discovery®--the embryonic development and stem cells database, which includes manually curated expression data for normal and diseased tissues, enabling advanced matching algorithm for gene-tissue association. This assists in evaluating differentiation protocols and discovering biomarkers for tissues and cells. Results are directly linked to gene, disease, or cell "cards" in the GeneCards suite. Future developments aim to enhance the GeneAnalytics algorithm as well as visualizations, employing varied graphical display items. Such attributes make GeneAnalytics a broadly applicable postgenomics data analyses and interpretation tool for translation of data to knowledge-based innovation in various Big Data fields such as precision medicine, ecogenomics, nutrigenomics, pharmacogenomics, vaccinomics, and others yet to emerge on the postgenomics horizon.</description><identifier>ISSN: 1536-2310</identifier><identifier>EISSN: 1557-8100</identifier><identifier>DOI: 10.1089/omi.2015.0168</identifier><identifier>PMID: 26983021</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Algorithms ; Computational Biology - methods ; Data Mining ; Databases, Factual ; Databases, Genetic ; Gene Regulatory Networks ; Genome, Human ; High-Throughput Nucleotide Sequencing - statistics &amp; numerical data ; Humans ; Metabolic Networks and Pathways - genetics ; Microarray Analysis - statistics &amp; numerical data ; Original ; Software</subject><ispartof>Omics (Larchmont, N.Y.), 2016-03, Vol.20 (3), p.139-151</ispartof><rights>Shani Ben-Ari Fuchs, et al., 2016. Published by Mary Ann Liebert, Inc. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-1020c40a57f20c1674363d1b618fbd9bf1dd7451aee5a11196cdf60628edb5ad3</citedby><cites>FETCH-LOGICAL-c420t-1020c40a57f20c1674363d1b618fbd9bf1dd7451aee5a11196cdf60628edb5ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26983021$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ben-Ari Fuchs, Shani</creatorcontrib><creatorcontrib>Lieder, Iris</creatorcontrib><creatorcontrib>Stelzer, Gil</creatorcontrib><creatorcontrib>Mazor, Yaron</creatorcontrib><creatorcontrib>Buzhor, Ella</creatorcontrib><creatorcontrib>Kaplan, Sergey</creatorcontrib><creatorcontrib>Bogoch, Yoel</creatorcontrib><creatorcontrib>Plaschkes, Inbar</creatorcontrib><creatorcontrib>Shitrit, Alina</creatorcontrib><creatorcontrib>Rappaport, Noa</creatorcontrib><creatorcontrib>Kohn, Asher</creatorcontrib><creatorcontrib>Edgar, Ron</creatorcontrib><creatorcontrib>Shenhav, Liraz</creatorcontrib><creatorcontrib>Safran, Marilyn</creatorcontrib><creatorcontrib>Lancet, Doron</creatorcontrib><creatorcontrib>Guan-Golan, Yaron</creatorcontrib><creatorcontrib>Warshawsky, David</creatorcontrib><creatorcontrib>Shtrichman, Ronit</creatorcontrib><title>GeneAnalytics: An Integrative Gene Set Analysis Tool for Next Generation Sequencing, RNAseq and Microarray Data</title><title>Omics (Larchmont, N.Y.)</title><addtitle>OMICS</addtitle><description>Postgenomics data are produced in large volumes by life sciences and clinical applications of novel omics diagnostics and therapeutics for precision medicine. To move from "data-to-knowledge-to-innovation," a crucial missing step in the current era is, however, our limited understanding of biological and clinical contexts associated with data. Prominent among the emerging remedies to this challenge are the gene set enrichment tools. This study reports on GeneAnalytics™ ( geneanalytics.genecards.org ), a comprehensive and easy-to-apply gene set analysis tool for rapid contextualization of expression patterns and functional signatures embedded in the postgenomics Big Data domains, such as Next Generation Sequencing (NGS), RNAseq, and microarray experiments. GeneAnalytics' differentiating features include in-depth evidence-based scoring algorithms, an intuitive user interface and proprietary unified data. GeneAnalytics employs the LifeMap Science's GeneCards suite, including the GeneCards®--the human gene database; the MalaCards-the human diseases database; and the PathCards--the biological pathways database. Expression-based analysis in GeneAnalytics relies on the LifeMap Discovery®--the embryonic development and stem cells database, which includes manually curated expression data for normal and diseased tissues, enabling advanced matching algorithm for gene-tissue association. This assists in evaluating differentiation protocols and discovering biomarkers for tissues and cells. Results are directly linked to gene, disease, or cell "cards" in the GeneCards suite. Future developments aim to enhance the GeneAnalytics algorithm as well as visualizations, employing varied graphical display items. Such attributes make GeneAnalytics a broadly applicable postgenomics data analyses and interpretation tool for translation of data to knowledge-based innovation in various Big Data fields such as precision medicine, ecogenomics, nutrigenomics, pharmacogenomics, vaccinomics, and others yet to emerge on the postgenomics horizon.</description><subject>Algorithms</subject><subject>Computational Biology - methods</subject><subject>Data Mining</subject><subject>Databases, Factual</subject><subject>Databases, Genetic</subject><subject>Gene Regulatory Networks</subject><subject>Genome, Human</subject><subject>High-Throughput Nucleotide Sequencing - statistics &amp; numerical data</subject><subject>Humans</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Microarray Analysis - statistics &amp; numerical data</subject><subject>Original</subject><subject>Software</subject><issn>1536-2310</issn><issn>1557-8100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS1ERUvhyBX5yKHZzjiJ7XBAWhVaKpUiQTlbTuwsRlm7tb0V--_rbEtFTz3NjN6np5l5hLxDWCDI7jis3YIBtgtALl-QA2xbUUkEeDn3Na9YjbBPXqf0B4AhZ_Urss94J-syHZBwZr1dej1tsxvSR7r09Nxnu4o6u1tLZ5X-tJnukOQSvQphomOI9NL-zTt9RoMv1M3G-sH51RH9cblM9oZqb-g3N8SgY9Rb-lln_YbsjXpK9u1DPSS_Tr9cnXytLr6fnZ8sL6qhYZArBAZDA7oVY2mQi6bmtcGeoxx70_UjGiOaFrW1rUbEjg9m5MCZtKZvtakPyad73-tNv7ZmsD5HPanr6NY6blXQTj1VvPutVuFWNaLrBLTF4MODQQzlsJTV2qXBTpP2NmySQsmElAI5PI-Ksirjcuda3aPlKSlFOz5uhKDmPFXJU815qjnPwr___4xH-l-A9R3nPpyE</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Ben-Ari Fuchs, Shani</creator><creator>Lieder, Iris</creator><creator>Stelzer, Gil</creator><creator>Mazor, Yaron</creator><creator>Buzhor, Ella</creator><creator>Kaplan, Sergey</creator><creator>Bogoch, Yoel</creator><creator>Plaschkes, Inbar</creator><creator>Shitrit, Alina</creator><creator>Rappaport, Noa</creator><creator>Kohn, Asher</creator><creator>Edgar, Ron</creator><creator>Shenhav, Liraz</creator><creator>Safran, Marilyn</creator><creator>Lancet, Doron</creator><creator>Guan-Golan, Yaron</creator><creator>Warshawsky, David</creator><creator>Shtrichman, Ronit</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201603</creationdate><title>GeneAnalytics: An Integrative Gene Set Analysis Tool for Next Generation Sequencing, RNAseq and Microarray Data</title><author>Ben-Ari Fuchs, Shani ; Lieder, Iris ; Stelzer, Gil ; Mazor, Yaron ; Buzhor, Ella ; Kaplan, Sergey ; Bogoch, Yoel ; Plaschkes, Inbar ; Shitrit, Alina ; Rappaport, Noa ; Kohn, Asher ; Edgar, Ron ; Shenhav, Liraz ; Safran, Marilyn ; Lancet, Doron ; Guan-Golan, Yaron ; Warshawsky, David ; Shtrichman, Ronit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-1020c40a57f20c1674363d1b618fbd9bf1dd7451aee5a11196cdf60628edb5ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Computational Biology - methods</topic><topic>Data Mining</topic><topic>Databases, Factual</topic><topic>Databases, Genetic</topic><topic>Gene Regulatory Networks</topic><topic>Genome, Human</topic><topic>High-Throughput Nucleotide Sequencing - statistics &amp; numerical data</topic><topic>Humans</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Microarray Analysis - statistics &amp; numerical data</topic><topic>Original</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben-Ari Fuchs, Shani</creatorcontrib><creatorcontrib>Lieder, Iris</creatorcontrib><creatorcontrib>Stelzer, Gil</creatorcontrib><creatorcontrib>Mazor, Yaron</creatorcontrib><creatorcontrib>Buzhor, Ella</creatorcontrib><creatorcontrib>Kaplan, Sergey</creatorcontrib><creatorcontrib>Bogoch, Yoel</creatorcontrib><creatorcontrib>Plaschkes, Inbar</creatorcontrib><creatorcontrib>Shitrit, Alina</creatorcontrib><creatorcontrib>Rappaport, Noa</creatorcontrib><creatorcontrib>Kohn, Asher</creatorcontrib><creatorcontrib>Edgar, Ron</creatorcontrib><creatorcontrib>Shenhav, Liraz</creatorcontrib><creatorcontrib>Safran, Marilyn</creatorcontrib><creatorcontrib>Lancet, Doron</creatorcontrib><creatorcontrib>Guan-Golan, Yaron</creatorcontrib><creatorcontrib>Warshawsky, David</creatorcontrib><creatorcontrib>Shtrichman, Ronit</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Omics (Larchmont, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben-Ari Fuchs, Shani</au><au>Lieder, Iris</au><au>Stelzer, Gil</au><au>Mazor, Yaron</au><au>Buzhor, Ella</au><au>Kaplan, Sergey</au><au>Bogoch, Yoel</au><au>Plaschkes, Inbar</au><au>Shitrit, Alina</au><au>Rappaport, Noa</au><au>Kohn, Asher</au><au>Edgar, Ron</au><au>Shenhav, Liraz</au><au>Safran, Marilyn</au><au>Lancet, Doron</au><au>Guan-Golan, Yaron</au><au>Warshawsky, David</au><au>Shtrichman, Ronit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GeneAnalytics: An Integrative Gene Set Analysis Tool for Next Generation Sequencing, RNAseq and Microarray Data</atitle><jtitle>Omics (Larchmont, N.Y.)</jtitle><addtitle>OMICS</addtitle><date>2016-03</date><risdate>2016</risdate><volume>20</volume><issue>3</issue><spage>139</spage><epage>151</epage><pages>139-151</pages><issn>1536-2310</issn><eissn>1557-8100</eissn><abstract>Postgenomics data are produced in large volumes by life sciences and clinical applications of novel omics diagnostics and therapeutics for precision medicine. To move from "data-to-knowledge-to-innovation," a crucial missing step in the current era is, however, our limited understanding of biological and clinical contexts associated with data. Prominent among the emerging remedies to this challenge are the gene set enrichment tools. This study reports on GeneAnalytics™ ( geneanalytics.genecards.org ), a comprehensive and easy-to-apply gene set analysis tool for rapid contextualization of expression patterns and functional signatures embedded in the postgenomics Big Data domains, such as Next Generation Sequencing (NGS), RNAseq, and microarray experiments. GeneAnalytics' differentiating features include in-depth evidence-based scoring algorithms, an intuitive user interface and proprietary unified data. GeneAnalytics employs the LifeMap Science's GeneCards suite, including the GeneCards®--the human gene database; the MalaCards-the human diseases database; and the PathCards--the biological pathways database. Expression-based analysis in GeneAnalytics relies on the LifeMap Discovery®--the embryonic development and stem cells database, which includes manually curated expression data for normal and diseased tissues, enabling advanced matching algorithm for gene-tissue association. This assists in evaluating differentiation protocols and discovering biomarkers for tissues and cells. Results are directly linked to gene, disease, or cell "cards" in the GeneCards suite. Future developments aim to enhance the GeneAnalytics algorithm as well as visualizations, employing varied graphical display items. Such attributes make GeneAnalytics a broadly applicable postgenomics data analyses and interpretation tool for translation of data to knowledge-based innovation in various Big Data fields such as precision medicine, ecogenomics, nutrigenomics, pharmacogenomics, vaccinomics, and others yet to emerge on the postgenomics horizon.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>26983021</pmid><doi>10.1089/omi.2015.0168</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1536-2310
ispartof Omics (Larchmont, N.Y.), 2016-03, Vol.20 (3), p.139-151
issn 1536-2310
1557-8100
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4799705
source MEDLINE; Alma/SFX Local Collection
subjects Algorithms
Computational Biology - methods
Data Mining
Databases, Factual
Databases, Genetic
Gene Regulatory Networks
Genome, Human
High-Throughput Nucleotide Sequencing - statistics & numerical data
Humans
Metabolic Networks and Pathways - genetics
Microarray Analysis - statistics & numerical data
Original
Software
title GeneAnalytics: An Integrative Gene Set Analysis Tool for Next Generation Sequencing, RNAseq and Microarray Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A05%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GeneAnalytics:%20An%20Integrative%20Gene%20Set%20Analysis%20Tool%20for%20Next%20Generation%20Sequencing,%20RNAseq%20and%20Microarray%20Data&rft.jtitle=Omics%20(Larchmont,%20N.Y.)&rft.au=Ben-Ari%20Fuchs,%20Shani&rft.date=2016-03&rft.volume=20&rft.issue=3&rft.spage=139&rft.epage=151&rft.pages=139-151&rft.issn=1536-2310&rft.eissn=1557-8100&rft_id=info:doi/10.1089/omi.2015.0168&rft_dat=%3Cproquest_pubme%3E1774526805%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1774526805&rft_id=info:pmid/26983021&rfr_iscdi=true