Intracellular Pressure Dynamics in Blebbing Cells
Blebs are pressure-driven protrusions that play an important role in cell migration, particularly in three-dimensional environments. A bleb is initiated when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven flow of cytosol toward the area of detachment and local exp...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2016-03, Vol.110 (5), p.1168-1179 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1179 |
---|---|
container_issue | 5 |
container_start_page | 1168 |
container_title | Biophysical journal |
container_volume | 110 |
creator | Strychalski, Wanda Guy, Robert D. |
description | Blebs are pressure-driven protrusions that play an important role in cell migration, particularly in three-dimensional environments. A bleb is initiated when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven flow of cytosol toward the area of detachment and local expansion of the cell membrane. Recent experiments involving blebbing cells have led to conflicting hypotheses regarding the timescale of intracellular pressure propagation. The interpretation of one set of experiments supports a poroelastic model of the cytoplasm that leads to slow pressure equilibration when compared to the timescale of bleb expansion. A different study concludes that pressure equilibrates faster than the timescale of bleb expansion. To address this discrepancy, a dynamic computational model of the cell was developed that includes mechanics of and the interactions among the cytoplasm, the actin cortex, the cell membrane, and the cytoskeleton. The model results quantify the relationship among cytoplasmic rheology, pressure, and bleb expansion dynamics, and provide a more detailed picture of intracellular pressure dynamics. This study shows the elastic response of the cytoplasm relieves pressure and limits bleb size, and that both permeability and elasticity of the cytoplasm determine bleb expansion time. Our model with a poroelastic cytoplasm shows that pressure disturbances from bleb initiation propagate faster than the timescale of bleb expansion and that pressure equilibrates slower than the timescale of bleb expansion. The multiple timescales in intracellular pressure dynamics explain the apparent discrepancy in the interpretation of experimental results. |
doi_str_mv | 10.1016/j.bpj.2016.01.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4788720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349516000564</els_id><sourcerecordid>3990353681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-258c36c05e93c4f6c0e17fe8b363f0194cd50855828ce94563b31f7e7eee9c9c3</originalsourceid><addsrcrecordid>eNp9kVtLxDAQhYMoul5-gC9S8MWXrpNbmyAIut4WFvRBn0ObnWpKt12TreC_N2VV1AdhIAPzzWFODiGHFMYUaHZaj8tlPWaxHQONxTbIiErBUgCVbZIRAGQpF1rukN0QaoiEBLpNdlimpVKajwidtitfWGyavil88uAxhN5jcvXeFgtnQ-La5LLBsnTtczKJWNgnW1XRBDz4fPfI08314-Qund3fTicXs9SKXK9SJpXlmQWJmltRxQ5pXqEqecYroFrYuQQlpWLKohYy4yWnVY45ImqrLd8j52vdZV8ucG5xOLQxS-8WhX83XeHM70nrXsxz92ZErlTOIAqcfAr47rXHsDILFwanRYtdHwzNc6a40oxH9PgPWne9b6O9gRKcg2AsUnRNWd-F4LH6PoaCGQIxtYmBmCEQAzTWsHP008X3xlcCEThbAxj_8s2hN8E6bC3OnUe7MvPO_SP_AQ5cmp8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1774330422</pqid></control><display><type>article</type><title>Intracellular Pressure Dynamics in Blebbing Cells</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Strychalski, Wanda ; Guy, Robert D.</creator><creatorcontrib>Strychalski, Wanda ; Guy, Robert D.</creatorcontrib><description>Blebs are pressure-driven protrusions that play an important role in cell migration, particularly in three-dimensional environments. A bleb is initiated when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven flow of cytosol toward the area of detachment and local expansion of the cell membrane. Recent experiments involving blebbing cells have led to conflicting hypotheses regarding the timescale of intracellular pressure propagation. The interpretation of one set of experiments supports a poroelastic model of the cytoplasm that leads to slow pressure equilibration when compared to the timescale of bleb expansion. A different study concludes that pressure equilibrates faster than the timescale of bleb expansion. To address this discrepancy, a dynamic computational model of the cell was developed that includes mechanics of and the interactions among the cytoplasm, the actin cortex, the cell membrane, and the cytoskeleton. The model results quantify the relationship among cytoplasmic rheology, pressure, and bleb expansion dynamics, and provide a more detailed picture of intracellular pressure dynamics. This study shows the elastic response of the cytoplasm relieves pressure and limits bleb size, and that both permeability and elasticity of the cytoplasm determine bleb expansion time. Our model with a poroelastic cytoplasm shows that pressure disturbances from bleb initiation propagate faster than the timescale of bleb expansion and that pressure equilibrates slower than the timescale of bleb expansion. The multiple timescales in intracellular pressure dynamics explain the apparent discrepancy in the interpretation of experimental results.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2016.01.012</identifier><identifier>PMID: 26958893</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biomechanical Phenomena ; Biophysics ; Cell Biophysics ; Cell Membrane - metabolism ; Cell Surface Extensions - metabolism ; Cellular biology ; Computer Simulation ; Cytoplasm ; Cytoskeleton ; Cytoskeleton - metabolism ; Elasticity ; Membranes ; Models, Biological ; Permeability ; Pressure ; Rheology ; Time Factors</subject><ispartof>Biophysical journal, 2016-03, Vol.110 (5), p.1168-1179</ispartof><rights>2016 Biophysical Society</rights><rights>Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Mar 8, 2016</rights><rights>2016 by the Biophysical Society. 2016 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-258c36c05e93c4f6c0e17fe8b363f0194cd50855828ce94563b31f7e7eee9c9c3</citedby><cites>FETCH-LOGICAL-c479t-258c36c05e93c4f6c0e17fe8b363f0194cd50855828ce94563b31f7e7eee9c9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788720/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349516000564$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26958893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Strychalski, Wanda</creatorcontrib><creatorcontrib>Guy, Robert D.</creatorcontrib><title>Intracellular Pressure Dynamics in Blebbing Cells</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Blebs are pressure-driven protrusions that play an important role in cell migration, particularly in three-dimensional environments. A bleb is initiated when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven flow of cytosol toward the area of detachment and local expansion of the cell membrane. Recent experiments involving blebbing cells have led to conflicting hypotheses regarding the timescale of intracellular pressure propagation. The interpretation of one set of experiments supports a poroelastic model of the cytoplasm that leads to slow pressure equilibration when compared to the timescale of bleb expansion. A different study concludes that pressure equilibrates faster than the timescale of bleb expansion. To address this discrepancy, a dynamic computational model of the cell was developed that includes mechanics of and the interactions among the cytoplasm, the actin cortex, the cell membrane, and the cytoskeleton. The model results quantify the relationship among cytoplasmic rheology, pressure, and bleb expansion dynamics, and provide a more detailed picture of intracellular pressure dynamics. This study shows the elastic response of the cytoplasm relieves pressure and limits bleb size, and that both permeability and elasticity of the cytoplasm determine bleb expansion time. Our model with a poroelastic cytoplasm shows that pressure disturbances from bleb initiation propagate faster than the timescale of bleb expansion and that pressure equilibrates slower than the timescale of bleb expansion. The multiple timescales in intracellular pressure dynamics explain the apparent discrepancy in the interpretation of experimental results.</description><subject>Biomechanical Phenomena</subject><subject>Biophysics</subject><subject>Cell Biophysics</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Surface Extensions - metabolism</subject><subject>Cellular biology</subject><subject>Computer Simulation</subject><subject>Cytoplasm</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - metabolism</subject><subject>Elasticity</subject><subject>Membranes</subject><subject>Models, Biological</subject><subject>Permeability</subject><subject>Pressure</subject><subject>Rheology</subject><subject>Time Factors</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kVtLxDAQhYMoul5-gC9S8MWXrpNbmyAIut4WFvRBn0ObnWpKt12TreC_N2VV1AdhIAPzzWFODiGHFMYUaHZaj8tlPWaxHQONxTbIiErBUgCVbZIRAGQpF1rukN0QaoiEBLpNdlimpVKajwidtitfWGyavil88uAxhN5jcvXeFgtnQ-La5LLBsnTtczKJWNgnW1XRBDz4fPfI08314-Qund3fTicXs9SKXK9SJpXlmQWJmltRxQ5pXqEqecYroFrYuQQlpWLKohYy4yWnVY45ImqrLd8j52vdZV8ucG5xOLQxS-8WhX83XeHM70nrXsxz92ZErlTOIAqcfAr47rXHsDILFwanRYtdHwzNc6a40oxH9PgPWne9b6O9gRKcg2AsUnRNWd-F4LH6PoaCGQIxtYmBmCEQAzTWsHP008X3xlcCEThbAxj_8s2hN8E6bC3OnUe7MvPO_SP_AQ5cmp8</recordid><startdate>20160308</startdate><enddate>20160308</enddate><creator>Strychalski, Wanda</creator><creator>Guy, Robert D.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160308</creationdate><title>Intracellular Pressure Dynamics in Blebbing Cells</title><author>Strychalski, Wanda ; Guy, Robert D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-258c36c05e93c4f6c0e17fe8b363f0194cd50855828ce94563b31f7e7eee9c9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biomechanical Phenomena</topic><topic>Biophysics</topic><topic>Cell Biophysics</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Surface Extensions - metabolism</topic><topic>Cellular biology</topic><topic>Computer Simulation</topic><topic>Cytoplasm</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - metabolism</topic><topic>Elasticity</topic><topic>Membranes</topic><topic>Models, Biological</topic><topic>Permeability</topic><topic>Pressure</topic><topic>Rheology</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strychalski, Wanda</creatorcontrib><creatorcontrib>Guy, Robert D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strychalski, Wanda</au><au>Guy, Robert D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intracellular Pressure Dynamics in Blebbing Cells</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2016-03-08</date><risdate>2016</risdate><volume>110</volume><issue>5</issue><spage>1168</spage><epage>1179</epage><pages>1168-1179</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Blebs are pressure-driven protrusions that play an important role in cell migration, particularly in three-dimensional environments. A bleb is initiated when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven flow of cytosol toward the area of detachment and local expansion of the cell membrane. Recent experiments involving blebbing cells have led to conflicting hypotheses regarding the timescale of intracellular pressure propagation. The interpretation of one set of experiments supports a poroelastic model of the cytoplasm that leads to slow pressure equilibration when compared to the timescale of bleb expansion. A different study concludes that pressure equilibrates faster than the timescale of bleb expansion. To address this discrepancy, a dynamic computational model of the cell was developed that includes mechanics of and the interactions among the cytoplasm, the actin cortex, the cell membrane, and the cytoskeleton. The model results quantify the relationship among cytoplasmic rheology, pressure, and bleb expansion dynamics, and provide a more detailed picture of intracellular pressure dynamics. This study shows the elastic response of the cytoplasm relieves pressure and limits bleb size, and that both permeability and elasticity of the cytoplasm determine bleb expansion time. Our model with a poroelastic cytoplasm shows that pressure disturbances from bleb initiation propagate faster than the timescale of bleb expansion and that pressure equilibrates slower than the timescale of bleb expansion. The multiple timescales in intracellular pressure dynamics explain the apparent discrepancy in the interpretation of experimental results.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26958893</pmid><doi>10.1016/j.bpj.2016.01.012</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2016-03, Vol.110 (5), p.1168-1179 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4788720 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Biomechanical Phenomena Biophysics Cell Biophysics Cell Membrane - metabolism Cell Surface Extensions - metabolism Cellular biology Computer Simulation Cytoplasm Cytoskeleton Cytoskeleton - metabolism Elasticity Membranes Models, Biological Permeability Pressure Rheology Time Factors |
title | Intracellular Pressure Dynamics in Blebbing Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A51%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intracellular%20Pressure%20Dynamics%20in%20Blebbing%20Cells&rft.jtitle=Biophysical%20journal&rft.au=Strychalski,%20Wanda&rft.date=2016-03-08&rft.volume=110&rft.issue=5&rft.spage=1168&rft.epage=1179&rft.pages=1168-1179&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2016.01.012&rft_dat=%3Cproquest_pubme%3E3990353681%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1774330422&rft_id=info:pmid/26958893&rft_els_id=S0006349516000564&rfr_iscdi=true |