Dynamically variable negative stiffness structures

Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2016-02, Vol.2 (2), p.e1500778-e1500778
Hauptverfasser: Churchill, Christopher B, Shahan, David W, Smith, Sloan P, Keefe, Andrew C, McKnight, Geoffrey P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1500778
container_issue 2
container_start_page e1500778
container_title Science advances
container_volume 2
creator Churchill, Christopher B
Shahan, David W
Smith, Sloan P
Keefe, Andrew C
McKnight, Geoffrey P
description Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (
doi_str_mv 10.1126/sciadv.1500778
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4788489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1774531937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-56968f98a8b0f767dfca70266059806f937148ceb64068049f2df4c5d33c0663</originalsourceid><addsrcrecordid>eNpVkM1LAzEQxYMottRePUqPXrYmm2SSXASpn1Dw0nvIZpMa2Y-a7C70v3elVeppHsybN48fQtcELwnJ4S7ZYMphSTjGQsgzNM2p4FnOmTw_0RM0T-kTY0wYACfqEk1yUFIJQaYof9w3pg7WVNV-MZgYTFG5ReO2pguDW6QueN-4lEYVe9v10aUrdOFNldz8OGdo8_y0Wb1m6_eXt9XDOrNUQpdxUCC9kkYW2AsQpbdG4BwAcyUxeEUFYdK6AhgGiZnyeemZ5SWlFgPQGbo_xO76onaldU0XTaV3MdQm7nVrgv6_acKH3raDZkJKJtUYcHsMiO1X71Kn65CsqyrTuLZPmgjBOCVjj9G6PFhtbFOKzv-9IVj_oNYH1PqIejy4OS33Z_8FS78BB_x7fQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1774531937</pqid></control><display><type>article</type><title>Dynamically variable negative stiffness structures</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Churchill, Christopher B ; Shahan, David W ; Smith, Sloan P ; Keefe, Andrew C ; McKnight, Geoffrey P</creator><creatorcontrib>Churchill, Christopher B ; Shahan, David W ; Smith, Sloan P ; Keefe, Andrew C ; McKnight, Geoffrey P</creatorcontrib><description>Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (&lt;10 ms) and useful (&gt;100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (&lt;30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.1500778</identifier><identifier>PMID: 26989771</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Animals ; Bioengineering - instrumentation ; Bioengineering - statistics &amp; numerical data ; Biomechanical Phenomena ; Humans ; Materials Engineering ; Robotics ; SciAdv r-articles ; Vibration ; Weight-Bearing</subject><ispartof>Science advances, 2016-02, Vol.2 (2), p.e1500778-e1500778</ispartof><rights>Copyright © 2016, The Authors 2016 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-56968f98a8b0f767dfca70266059806f937148ceb64068049f2df4c5d33c0663</citedby><cites>FETCH-LOGICAL-c386t-56968f98a8b0f767dfca70266059806f937148ceb64068049f2df4c5d33c0663</cites><orcidid>0000-0002-2976-3146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788489/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788489/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26989771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Churchill, Christopher B</creatorcontrib><creatorcontrib>Shahan, David W</creatorcontrib><creatorcontrib>Smith, Sloan P</creatorcontrib><creatorcontrib>Keefe, Andrew C</creatorcontrib><creatorcontrib>McKnight, Geoffrey P</creatorcontrib><title>Dynamically variable negative stiffness structures</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (&lt;10 ms) and useful (&gt;100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (&lt;30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators.</description><subject>Animals</subject><subject>Bioengineering - instrumentation</subject><subject>Bioengineering - statistics &amp; numerical data</subject><subject>Biomechanical Phenomena</subject><subject>Humans</subject><subject>Materials Engineering</subject><subject>Robotics</subject><subject>SciAdv r-articles</subject><subject>Vibration</subject><subject>Weight-Bearing</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkM1LAzEQxYMottRePUqPXrYmm2SSXASpn1Dw0nvIZpMa2Y-a7C70v3elVeppHsybN48fQtcELwnJ4S7ZYMphSTjGQsgzNM2p4FnOmTw_0RM0T-kTY0wYACfqEk1yUFIJQaYof9w3pg7WVNV-MZgYTFG5ReO2pguDW6QueN-4lEYVe9v10aUrdOFNldz8OGdo8_y0Wb1m6_eXt9XDOrNUQpdxUCC9kkYW2AsQpbdG4BwAcyUxeEUFYdK6AhgGiZnyeemZ5SWlFgPQGbo_xO76onaldU0XTaV3MdQm7nVrgv6_acKH3raDZkJKJtUYcHsMiO1X71Kn65CsqyrTuLZPmgjBOCVjj9G6PFhtbFOKzv-9IVj_oNYH1PqIejy4OS33Z_8FS78BB_x7fQ</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Churchill, Christopher B</creator><creator>Shahan, David W</creator><creator>Smith, Sloan P</creator><creator>Keefe, Andrew C</creator><creator>McKnight, Geoffrey P</creator><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2976-3146</orcidid></search><sort><creationdate>20160201</creationdate><title>Dynamically variable negative stiffness structures</title><author>Churchill, Christopher B ; Shahan, David W ; Smith, Sloan P ; Keefe, Andrew C ; McKnight, Geoffrey P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-56968f98a8b0f767dfca70266059806f937148ceb64068049f2df4c5d33c0663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Bioengineering - instrumentation</topic><topic>Bioengineering - statistics &amp; numerical data</topic><topic>Biomechanical Phenomena</topic><topic>Humans</topic><topic>Materials Engineering</topic><topic>Robotics</topic><topic>SciAdv r-articles</topic><topic>Vibration</topic><topic>Weight-Bearing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Churchill, Christopher B</creatorcontrib><creatorcontrib>Shahan, David W</creatorcontrib><creatorcontrib>Smith, Sloan P</creatorcontrib><creatorcontrib>Keefe, Andrew C</creatorcontrib><creatorcontrib>McKnight, Geoffrey P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Churchill, Christopher B</au><au>Shahan, David W</au><au>Smith, Sloan P</au><au>Keefe, Andrew C</au><au>McKnight, Geoffrey P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamically variable negative stiffness structures</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>2</volume><issue>2</issue><spage>e1500778</spage><epage>e1500778</epage><pages>e1500778-e1500778</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (&lt;10 ms) and useful (&gt;100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (&lt;30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>26989771</pmid><doi>10.1126/sciadv.1500778</doi><orcidid>https://orcid.org/0000-0002-2976-3146</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2016-02, Vol.2 (2), p.e1500778-e1500778
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4788489
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Bioengineering - instrumentation
Bioengineering - statistics & numerical data
Biomechanical Phenomena
Humans
Materials Engineering
Robotics
SciAdv r-articles
Vibration
Weight-Bearing
title Dynamically variable negative stiffness structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamically%20variable%20negative%20stiffness%20structures&rft.jtitle=Science%20advances&rft.au=Churchill,%20Christopher%20B&rft.date=2016-02-01&rft.volume=2&rft.issue=2&rft.spage=e1500778&rft.epage=e1500778&rft.pages=e1500778-e1500778&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.1500778&rft_dat=%3Cproquest_pubme%3E1774531937%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1774531937&rft_id=info:pmid/26989771&rfr_iscdi=true