Dynamically variable negative stiffness structures
Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structur...
Gespeichert in:
Veröffentlicht in: | Science advances 2016-02, Vol.2 (2), p.e1500778-e1500778 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1500778 |
---|---|
container_issue | 2 |
container_start_page | e1500778 |
container_title | Science advances |
container_volume | 2 |
creator | Churchill, Christopher B Shahan, David W Smith, Sloan P Keefe, Andrew C McKnight, Geoffrey P |
description | Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small ( |
doi_str_mv | 10.1126/sciadv.1500778 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4788489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1774531937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-56968f98a8b0f767dfca70266059806f937148ceb64068049f2df4c5d33c0663</originalsourceid><addsrcrecordid>eNpVkM1LAzEQxYMottRePUqPXrYmm2SSXASpn1Dw0nvIZpMa2Y-a7C70v3elVeppHsybN48fQtcELwnJ4S7ZYMphSTjGQsgzNM2p4FnOmTw_0RM0T-kTY0wYACfqEk1yUFIJQaYof9w3pg7WVNV-MZgYTFG5ReO2pguDW6QueN-4lEYVe9v10aUrdOFNldz8OGdo8_y0Wb1m6_eXt9XDOrNUQpdxUCC9kkYW2AsQpbdG4BwAcyUxeEUFYdK6AhgGiZnyeemZ5SWlFgPQGbo_xO76onaldU0XTaV3MdQm7nVrgv6_acKH3raDZkJKJtUYcHsMiO1X71Kn65CsqyrTuLZPmgjBOCVjj9G6PFhtbFOKzv-9IVj_oNYH1PqIejy4OS33Z_8FS78BB_x7fQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1774531937</pqid></control><display><type>article</type><title>Dynamically variable negative stiffness structures</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Churchill, Christopher B ; Shahan, David W ; Smith, Sloan P ; Keefe, Andrew C ; McKnight, Geoffrey P</creator><creatorcontrib>Churchill, Christopher B ; Shahan, David W ; Smith, Sloan P ; Keefe, Andrew C ; McKnight, Geoffrey P</creatorcontrib><description>Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.1500778</identifier><identifier>PMID: 26989771</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Animals ; Bioengineering - instrumentation ; Bioengineering - statistics & numerical data ; Biomechanical Phenomena ; Humans ; Materials Engineering ; Robotics ; SciAdv r-articles ; Vibration ; Weight-Bearing</subject><ispartof>Science advances, 2016-02, Vol.2 (2), p.e1500778-e1500778</ispartof><rights>Copyright © 2016, The Authors 2016 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-56968f98a8b0f767dfca70266059806f937148ceb64068049f2df4c5d33c0663</citedby><cites>FETCH-LOGICAL-c386t-56968f98a8b0f767dfca70266059806f937148ceb64068049f2df4c5d33c0663</cites><orcidid>0000-0002-2976-3146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788489/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788489/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26989771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Churchill, Christopher B</creatorcontrib><creatorcontrib>Shahan, David W</creatorcontrib><creatorcontrib>Smith, Sloan P</creatorcontrib><creatorcontrib>Keefe, Andrew C</creatorcontrib><creatorcontrib>McKnight, Geoffrey P</creatorcontrib><title>Dynamically variable negative stiffness structures</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators.</description><subject>Animals</subject><subject>Bioengineering - instrumentation</subject><subject>Bioengineering - statistics & numerical data</subject><subject>Biomechanical Phenomena</subject><subject>Humans</subject><subject>Materials Engineering</subject><subject>Robotics</subject><subject>SciAdv r-articles</subject><subject>Vibration</subject><subject>Weight-Bearing</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkM1LAzEQxYMottRePUqPXrYmm2SSXASpn1Dw0nvIZpMa2Y-a7C70v3elVeppHsybN48fQtcELwnJ4S7ZYMphSTjGQsgzNM2p4FnOmTw_0RM0T-kTY0wYACfqEk1yUFIJQaYof9w3pg7WVNV-MZgYTFG5ReO2pguDW6QueN-4lEYVe9v10aUrdOFNldz8OGdo8_y0Wb1m6_eXt9XDOrNUQpdxUCC9kkYW2AsQpbdG4BwAcyUxeEUFYdK6AhgGiZnyeemZ5SWlFgPQGbo_xO76onaldU0XTaV3MdQm7nVrgv6_acKH3raDZkJKJtUYcHsMiO1X71Kn65CsqyrTuLZPmgjBOCVjj9G6PFhtbFOKzv-9IVj_oNYH1PqIejy4OS33Z_8FS78BB_x7fQ</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Churchill, Christopher B</creator><creator>Shahan, David W</creator><creator>Smith, Sloan P</creator><creator>Keefe, Andrew C</creator><creator>McKnight, Geoffrey P</creator><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2976-3146</orcidid></search><sort><creationdate>20160201</creationdate><title>Dynamically variable negative stiffness structures</title><author>Churchill, Christopher B ; Shahan, David W ; Smith, Sloan P ; Keefe, Andrew C ; McKnight, Geoffrey P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-56968f98a8b0f767dfca70266059806f937148ceb64068049f2df4c5d33c0663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Bioengineering - instrumentation</topic><topic>Bioengineering - statistics & numerical data</topic><topic>Biomechanical Phenomena</topic><topic>Humans</topic><topic>Materials Engineering</topic><topic>Robotics</topic><topic>SciAdv r-articles</topic><topic>Vibration</topic><topic>Weight-Bearing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Churchill, Christopher B</creatorcontrib><creatorcontrib>Shahan, David W</creatorcontrib><creatorcontrib>Smith, Sloan P</creatorcontrib><creatorcontrib>Keefe, Andrew C</creatorcontrib><creatorcontrib>McKnight, Geoffrey P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Churchill, Christopher B</au><au>Shahan, David W</au><au>Smith, Sloan P</au><au>Keefe, Andrew C</au><au>McKnight, Geoffrey P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamically variable negative stiffness structures</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>2</volume><issue>2</issue><spage>e1500778</spage><epage>e1500778</epage><pages>e1500778-e1500778</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>26989771</pmid><doi>10.1126/sciadv.1500778</doi><orcidid>https://orcid.org/0000-0002-2976-3146</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2016-02, Vol.2 (2), p.e1500778-e1500778 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4788489 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Bioengineering - instrumentation Bioengineering - statistics & numerical data Biomechanical Phenomena Humans Materials Engineering Robotics SciAdv r-articles Vibration Weight-Bearing |
title | Dynamically variable negative stiffness structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamically%20variable%20negative%20stiffness%20structures&rft.jtitle=Science%20advances&rft.au=Churchill,%20Christopher%20B&rft.date=2016-02-01&rft.volume=2&rft.issue=2&rft.spage=e1500778&rft.epage=e1500778&rft.pages=e1500778-e1500778&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.1500778&rft_dat=%3Cproquest_pubme%3E1774531937%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1774531937&rft_id=info:pmid/26989771&rfr_iscdi=true |