Unique and Overlapping Functions of Formins Frl and DAAM During Ommatidial Rotation and Neuronal Development in Drosophila
The noncanonical Frizzled/planar cell polarity (PCP) pathway regulates establishment of polarity within the plane of an epithelium to generate diversity of cell fates, asymmetric, but highly aligned structures, or to orchestrate the directional migration of cells during convergent extension during v...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 2016-03, Vol.202 (3), p.1135-1151 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1151 |
---|---|
container_issue | 3 |
container_start_page | 1135 |
container_title | Genetics (Austin) |
container_volume | 202 |
creator | Dollar, Gretchen Gombos, Rita Barnett, Austen A Sanchez Hernandez, David Maung, Saw M T Mihály, Jozsef Jenny, Andreas |
description | The noncanonical Frizzled/planar cell polarity (PCP) pathway regulates establishment of polarity within the plane of an epithelium to generate diversity of cell fates, asymmetric, but highly aligned structures, or to orchestrate the directional migration of cells during convergent extension during vertebrate gastrulation. In Drosophila, PCP signaling is essential to orient actin wing hairs and to align ommatidia in the eye, in part by coordinating the movement of groups of photoreceptor cells during ommatidial rotation. Importantly, the coordination of PCP signaling with changes in the cytoskeleton is essential for proper epithelial polarity. Formins polymerize linear actin filaments and are key regulators of the actin cytoskeleton. Here, we show that the diaphanous-related formin, Frl, the single fly member of the FMNL (formin related in leukocytes/formin-like) formin subfamily affects ommatidial rotation in the Drosophila eye and is controlled by the Rho family GTPase Cdc42. Interestingly, we also found that frl mutants exhibit an axon growth phenotype in the mushroom body, a center for olfactory learning in the Drosophila brain, which is also affected in a subset of PCP genes. Significantly, Frl cooperates with Cdc42 and another formin, DAAM, during mushroom body formation. This study thus suggests that different formins can cooperate or act independently in distinct tissues, likely integrating various signaling inputs with the regulation of the cytoskeleton. It furthermore highlights the importance and complexity of formin-dependent cytoskeletal regulation in multiple organs and developmental contexts. |
doi_str_mv | 10.1534/genetics.115.181438 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4788114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1780521755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-25c5a84fd0cf38acdbd44fcf28e162bc2e577a68b427fb6907996024a714e50f3</originalsourceid><addsrcrecordid>eNqNks1qGzEUhUVpaBK3T1AoA910Y0fS6G82BRPHbSGtoTRrodFIjoJGmkozhubpI9tJSLvqShfpO5ercw8A7xFcIFqTi60JZnQ6LxCiCyQQqcUrcIYaUs8xq9HrF_UpOM_5DkLIGiregFPMBERIwDNwfxPc78lUKnTVZmeSV8PgwrZaT0GPLoZcRVutY-pdKdfJH8DVcvm9Wk1pD276Xo2uc8pXP-Oo9poD88NMKYZyuzI74-PQmzBWLlSrFHMcbp1Xb8GJVT6bd4_nDNysr35dfp1fb758u1xezzVhbJxjqqkSxHZQ21oo3bUdIVZbLAxiuNXYUM4VEy3B3LasgbxpGMREcUQMhbaegc_HvsPU9qbTZZCkvByS61X6I6Ny8u-X4G7lNu4k4UKgYusMfHpskGLxKo-yd1kb71UwccoScQEpRpzS_0A54rhsjxf04z_oXZxScexAkRrCBu-p-kjp4ltOxj7PjaDcx0A-xUCWGMhjDIrqw8svP2ue9l4_AEgnsaE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1774300927</pqid></control><display><type>article</type><title>Unique and Overlapping Functions of Formins Frl and DAAM During Ommatidial Rotation and Neuronal Development in Drosophila</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Dollar, Gretchen ; Gombos, Rita ; Barnett, Austen A ; Sanchez Hernandez, David ; Maung, Saw M T ; Mihály, Jozsef ; Jenny, Andreas</creator><creatorcontrib>Dollar, Gretchen ; Gombos, Rita ; Barnett, Austen A ; Sanchez Hernandez, David ; Maung, Saw M T ; Mihály, Jozsef ; Jenny, Andreas</creatorcontrib><description>The noncanonical Frizzled/planar cell polarity (PCP) pathway regulates establishment of polarity within the plane of an epithelium to generate diversity of cell fates, asymmetric, but highly aligned structures, or to orchestrate the directional migration of cells during convergent extension during vertebrate gastrulation. In Drosophila, PCP signaling is essential to orient actin wing hairs and to align ommatidia in the eye, in part by coordinating the movement of groups of photoreceptor cells during ommatidial rotation. Importantly, the coordination of PCP signaling with changes in the cytoskeleton is essential for proper epithelial polarity. Formins polymerize linear actin filaments and are key regulators of the actin cytoskeleton. Here, we show that the diaphanous-related formin, Frl, the single fly member of the FMNL (formin related in leukocytes/formin-like) formin subfamily affects ommatidial rotation in the Drosophila eye and is controlled by the Rho family GTPase Cdc42. Interestingly, we also found that frl mutants exhibit an axon growth phenotype in the mushroom body, a center for olfactory learning in the Drosophila brain, which is also affected in a subset of PCP genes. Significantly, Frl cooperates with Cdc42 and another formin, DAAM, during mushroom body formation. This study thus suggests that different formins can cooperate or act independently in distinct tissues, likely integrating various signaling inputs with the regulation of the cytoskeleton. It furthermore highlights the importance and complexity of formin-dependent cytoskeletal regulation in multiple organs and developmental contexts.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.115.181438</identifier><identifier>PMID: 26801180</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Society of America</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - physiology ; Animals ; Axons - physiology ; Cell division ; Cell growth ; Cell Polarity ; Cytoskeleton ; Cytoskeleton - physiology ; Drosophila ; Drosophila - embryology ; Drosophila - genetics ; Drosophila Proteins - genetics ; Drosophila Proteins - physiology ; Eye - embryology ; Fetal Proteins - genetics ; Fetal Proteins - physiology ; Gene Expression Regulation, Developmental ; Gene Knockdown Techniques ; Genotype & phenotype ; GTP-Binding Proteins - physiology ; Insects ; Investigations ; Microfilament Proteins - genetics ; Microfilament Proteins - physiology ; Mushroom Bodies - cytology ; Mushroom Bodies - embryology ; Nuclear Proteins - genetics ; Nuclear Proteins - physiology ; Organogenesis ; Rotation</subject><ispartof>Genetics (Austin), 2016-03, Vol.202 (3), p.1135-1151</ispartof><rights>Copyright © 2016 by the Genetics Society of America.</rights><rights>Copyright Genetics Society of America Mar 2016</rights><rights>Copyright © 2016 by the Genetics Society of America 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-25c5a84fd0cf38acdbd44fcf28e162bc2e577a68b427fb6907996024a714e50f3</citedby><cites>FETCH-LOGICAL-c466t-25c5a84fd0cf38acdbd44fcf28e162bc2e577a68b427fb6907996024a714e50f3</cites><orcidid>0000-0001-5989-8212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26801180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dollar, Gretchen</creatorcontrib><creatorcontrib>Gombos, Rita</creatorcontrib><creatorcontrib>Barnett, Austen A</creatorcontrib><creatorcontrib>Sanchez Hernandez, David</creatorcontrib><creatorcontrib>Maung, Saw M T</creatorcontrib><creatorcontrib>Mihály, Jozsef</creatorcontrib><creatorcontrib>Jenny, Andreas</creatorcontrib><title>Unique and Overlapping Functions of Formins Frl and DAAM During Ommatidial Rotation and Neuronal Development in Drosophila</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>The noncanonical Frizzled/planar cell polarity (PCP) pathway regulates establishment of polarity within the plane of an epithelium to generate diversity of cell fates, asymmetric, but highly aligned structures, or to orchestrate the directional migration of cells during convergent extension during vertebrate gastrulation. In Drosophila, PCP signaling is essential to orient actin wing hairs and to align ommatidia in the eye, in part by coordinating the movement of groups of photoreceptor cells during ommatidial rotation. Importantly, the coordination of PCP signaling with changes in the cytoskeleton is essential for proper epithelial polarity. Formins polymerize linear actin filaments and are key regulators of the actin cytoskeleton. Here, we show that the diaphanous-related formin, Frl, the single fly member of the FMNL (formin related in leukocytes/formin-like) formin subfamily affects ommatidial rotation in the Drosophila eye and is controlled by the Rho family GTPase Cdc42. Interestingly, we also found that frl mutants exhibit an axon growth phenotype in the mushroom body, a center for olfactory learning in the Drosophila brain, which is also affected in a subset of PCP genes. Significantly, Frl cooperates with Cdc42 and another formin, DAAM, during mushroom body formation. This study thus suggests that different formins can cooperate or act independently in distinct tissues, likely integrating various signaling inputs with the regulation of the cytoskeleton. It furthermore highlights the importance and complexity of formin-dependent cytoskeletal regulation in multiple organs and developmental contexts.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - physiology</subject><subject>Animals</subject><subject>Axons - physiology</subject><subject>Cell division</subject><subject>Cell growth</subject><subject>Cell Polarity</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - physiology</subject><subject>Drosophila</subject><subject>Drosophila - embryology</subject><subject>Drosophila - genetics</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - physiology</subject><subject>Eye - embryology</subject><subject>Fetal Proteins - genetics</subject><subject>Fetal Proteins - physiology</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Knockdown Techniques</subject><subject>Genotype & phenotype</subject><subject>GTP-Binding Proteins - physiology</subject><subject>Insects</subject><subject>Investigations</subject><subject>Microfilament Proteins - genetics</subject><subject>Microfilament Proteins - physiology</subject><subject>Mushroom Bodies - cytology</subject><subject>Mushroom Bodies - embryology</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - physiology</subject><subject>Organogenesis</subject><subject>Rotation</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNks1qGzEUhUVpaBK3T1AoA910Y0fS6G82BRPHbSGtoTRrodFIjoJGmkozhubpI9tJSLvqShfpO5ercw8A7xFcIFqTi60JZnQ6LxCiCyQQqcUrcIYaUs8xq9HrF_UpOM_5DkLIGiregFPMBERIwDNwfxPc78lUKnTVZmeSV8PgwrZaT0GPLoZcRVutY-pdKdfJH8DVcvm9Wk1pD276Xo2uc8pXP-Oo9poD88NMKYZyuzI74-PQmzBWLlSrFHMcbp1Xb8GJVT6bd4_nDNysr35dfp1fb758u1xezzVhbJxjqqkSxHZQ21oo3bUdIVZbLAxiuNXYUM4VEy3B3LasgbxpGMREcUQMhbaegc_HvsPU9qbTZZCkvByS61X6I6Ny8u-X4G7lNu4k4UKgYusMfHpskGLxKo-yd1kb71UwccoScQEpRpzS_0A54rhsjxf04z_oXZxScexAkRrCBu-p-kjp4ltOxj7PjaDcx0A-xUCWGMhjDIrqw8svP2ue9l4_AEgnsaE</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Dollar, Gretchen</creator><creator>Gombos, Rita</creator><creator>Barnett, Austen A</creator><creator>Sanchez Hernandez, David</creator><creator>Maung, Saw M T</creator><creator>Mihály, Jozsef</creator><creator>Jenny, Andreas</creator><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5989-8212</orcidid></search><sort><creationdate>20160301</creationdate><title>Unique and Overlapping Functions of Formins Frl and DAAM During Ommatidial Rotation and Neuronal Development in Drosophila</title><author>Dollar, Gretchen ; Gombos, Rita ; Barnett, Austen A ; Sanchez Hernandez, David ; Maung, Saw M T ; Mihály, Jozsef ; Jenny, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-25c5a84fd0cf38acdbd44fcf28e162bc2e577a68b427fb6907996024a714e50f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - physiology</topic><topic>Animals</topic><topic>Axons - physiology</topic><topic>Cell division</topic><topic>Cell growth</topic><topic>Cell Polarity</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - physiology</topic><topic>Drosophila</topic><topic>Drosophila - embryology</topic><topic>Drosophila - genetics</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - physiology</topic><topic>Eye - embryology</topic><topic>Fetal Proteins - genetics</topic><topic>Fetal Proteins - physiology</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Knockdown Techniques</topic><topic>Genotype & phenotype</topic><topic>GTP-Binding Proteins - physiology</topic><topic>Insects</topic><topic>Investigations</topic><topic>Microfilament Proteins - genetics</topic><topic>Microfilament Proteins - physiology</topic><topic>Mushroom Bodies - cytology</topic><topic>Mushroom Bodies - embryology</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - physiology</topic><topic>Organogenesis</topic><topic>Rotation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dollar, Gretchen</creatorcontrib><creatorcontrib>Gombos, Rita</creatorcontrib><creatorcontrib>Barnett, Austen A</creatorcontrib><creatorcontrib>Sanchez Hernandez, David</creatorcontrib><creatorcontrib>Maung, Saw M T</creatorcontrib><creatorcontrib>Mihály, Jozsef</creatorcontrib><creatorcontrib>Jenny, Andreas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dollar, Gretchen</au><au>Gombos, Rita</au><au>Barnett, Austen A</au><au>Sanchez Hernandez, David</au><au>Maung, Saw M T</au><au>Mihály, Jozsef</au><au>Jenny, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unique and Overlapping Functions of Formins Frl and DAAM During Ommatidial Rotation and Neuronal Development in Drosophila</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>202</volume><issue>3</issue><spage>1135</spage><epage>1151</epage><pages>1135-1151</pages><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>The noncanonical Frizzled/planar cell polarity (PCP) pathway regulates establishment of polarity within the plane of an epithelium to generate diversity of cell fates, asymmetric, but highly aligned structures, or to orchestrate the directional migration of cells during convergent extension during vertebrate gastrulation. In Drosophila, PCP signaling is essential to orient actin wing hairs and to align ommatidia in the eye, in part by coordinating the movement of groups of photoreceptor cells during ommatidial rotation. Importantly, the coordination of PCP signaling with changes in the cytoskeleton is essential for proper epithelial polarity. Formins polymerize linear actin filaments and are key regulators of the actin cytoskeleton. Here, we show that the diaphanous-related formin, Frl, the single fly member of the FMNL (formin related in leukocytes/formin-like) formin subfamily affects ommatidial rotation in the Drosophila eye and is controlled by the Rho family GTPase Cdc42. Interestingly, we also found that frl mutants exhibit an axon growth phenotype in the mushroom body, a center for olfactory learning in the Drosophila brain, which is also affected in a subset of PCP genes. Significantly, Frl cooperates with Cdc42 and another formin, DAAM, during mushroom body formation. This study thus suggests that different formins can cooperate or act independently in distinct tissues, likely integrating various signaling inputs with the regulation of the cytoskeleton. It furthermore highlights the importance and complexity of formin-dependent cytoskeletal regulation in multiple organs and developmental contexts.</abstract><cop>United States</cop><pub>Genetics Society of America</pub><pmid>26801180</pmid><doi>10.1534/genetics.115.181438</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5989-8212</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-2631 |
ispartof | Genetics (Austin), 2016-03, Vol.202 (3), p.1135-1151 |
issn | 1943-2631 0016-6731 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4788114 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - physiology Animals Axons - physiology Cell division Cell growth Cell Polarity Cytoskeleton Cytoskeleton - physiology Drosophila Drosophila - embryology Drosophila - genetics Drosophila Proteins - genetics Drosophila Proteins - physiology Eye - embryology Fetal Proteins - genetics Fetal Proteins - physiology Gene Expression Regulation, Developmental Gene Knockdown Techniques Genotype & phenotype GTP-Binding Proteins - physiology Insects Investigations Microfilament Proteins - genetics Microfilament Proteins - physiology Mushroom Bodies - cytology Mushroom Bodies - embryology Nuclear Proteins - genetics Nuclear Proteins - physiology Organogenesis Rotation |
title | Unique and Overlapping Functions of Formins Frl and DAAM During Ommatidial Rotation and Neuronal Development in Drosophila |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unique%20and%20Overlapping%20Functions%20of%20Formins%20Frl%20and%20DAAM%20During%20Ommatidial%20Rotation%20and%20Neuronal%20Development%20in%20Drosophila&rft.jtitle=Genetics%20(Austin)&rft.au=Dollar,%20Gretchen&rft.date=2016-03-01&rft.volume=202&rft.issue=3&rft.spage=1135&rft.epage=1151&rft.pages=1135-1151&rft.issn=1943-2631&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.115.181438&rft_dat=%3Cproquest_pubme%3E1780521755%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1774300927&rft_id=info:pmid/26801180&rfr_iscdi=true |