Pin1-mediated Modification Prolongs the Nuclear Retention of β-Catenin in Wnt3a-induced Osteoblast Differentiation
The canonical Wnt signaling pathway, in which β-catenin nuclear localization is a crucial step, plays an important role in osteoblast differentiation. Pin1, a prolyl isomerase, is also known as a key enzyme in osteogenesis. However, the role of Pin1 in canonical Wnt signal-induced osteoblast differe...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2016-03, Vol.291 (11), p.5555-5565 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The canonical Wnt signaling pathway, in which β-catenin nuclear localization is a crucial step, plays an important role in osteoblast differentiation. Pin1, a prolyl isomerase, is also known as a key enzyme in osteogenesis. However, the role of Pin1 in canonical Wnt signal-induced osteoblast differentiation is poorly understood. We found that Pin1 deficiency caused osteopenia and reduction of β-catenin in bone lining cells. Similarly, Pin1 knockdown or treatment with Pin1 inhibitors strongly decreased the nuclear β-catenin level, TOP flash activity, and expression of bone marker genes induced by canonical Wnt activation and vice versa in Pin1 overexpression. Pin1 interacts directly with and isomerizes β-catenin in the nucleus. The isomerized β-catenin could not bind to nuclear adenomatous polyposis coli, which drives β-catenin out of the nucleus for proteasomal degradation, which consequently increases the retention of β-catenin in the nucleus and might explain the decrease of β-catenin ubiquitination. These results indicate that Pin1 could be a critical target to modulate β-catenin-mediated osteogenesis. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M115.698563 |