T1 bias in chemical shift-encoded liver fat-fraction: Role of the flip angle
Purpose To investigate flip angle (FA)‐dependent T1 bias in chemical shift‐encoded fat‐fraction (FF) and to evaluate a strategy for correcting this bias to achieve accurate MRI‐based estimates of liver fat with optimized signal‐to‐noise ratio (SNR). Materials and Methods Thirty‐three obese patients,...
Gespeichert in:
Veröffentlicht in: | Journal of magnetic resonance imaging 2014-10, Vol.40 (4), p.875-883 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 883 |
---|---|
container_issue | 4 |
container_start_page | 875 |
container_title | Journal of magnetic resonance imaging |
container_volume | 40 |
creator | Kühn, Jens-Peter Jahn, Christina Hernando, Diego Siegmund, Werner Hadlich, Stefan Mayerle, Julia Pfannmöller, Jörg Langner, Sonke Reeder, Scott |
description | Purpose
To investigate flip angle (FA)‐dependent T1 bias in chemical shift‐encoded fat‐fraction (FF) and to evaluate a strategy for correcting this bias to achieve accurate MRI‐based estimates of liver fat with optimized signal‐to‐noise ratio (SNR).
Materials and Methods
Thirty‐three obese patients, 14 men/19 women, aged 57.3 ± 13.9 years underwent 3 Tesla (T) liver MRI including MR‐spectroscopy and four three‐echo‐complex chemical shift‐encoded MRI sequences using different FAs (1°/3°/10°/20°). FF was estimated with R2* correction and multi‐peak fat spectral modeling. The FF for each FA with and without T1 correction was compared with spectroscopy as a reference standard, using linear regression. Relative SNR of the magnitude data were assessed for each flip angle.
Results
The correlation between chemical shift‐encoded MRI and spectroscopy was high (R2 ≈ 0.9). Without T1 correction, the agreement of both techniques showed no significant differences in slope (PFlipAngle1° = 0.385/PFlipAngle3° = 0.289) using low FA. High FA resulted in significant different slopes (PFlipAngle10° = 0.016/PFlipAngle20° = 0.014. T1 bias was successfully corrected using the T1 correction strategy (slope:PFlipAngle10° = 0.387/PFlipAngle20° = 0.440). Additionally, the use of high FA (near the Ernst angle) improved the SNR of the magnitude data (FA1 vs. FA3; respectively FA1 vs. FA10 P ≤ 0.001).
Conclusion
T1 bias is a strong confounder in the assessment of liver fat using chemical shift imaging with high FA. However, using a larger flip angle with T1 correction leads to higher SNR, and residual error after T1 correction is very small. J. Magn. Reson. Imaging 2014;40:875–883. © 2013 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/jmri.24457 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4785023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3433056901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5567-1073f5e23f4e5a509b89917d969c0dc2284eaa242402e8262995e7196d6e42023</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSNERUthwwMgS2wqpLT-jWMWSKiC0GoGRCliaXmc644HJ57amULfnoRpR4UFq2vpfufoXJ-ieEHwMcGYnqy65I8p50I-Kg6IoLSkoq4ej28sWElqLPeLpzmvMMZKcfGk2KeccsaZOihmlwQtvMnI98guofPWBJSX3g0l9Da20KLgbyAhZ4bSJWMHH_s36CIGQNGhYQnIBb9Gpr8K8KzYcyZkeH43D4tvH95fnn4sZ5-bs9N3s9IKUcmSYMmcAMocB2EEVotaKSJbVSmLW0tpzcGYKSOmUNOKKiVAElW1FXCKKTss3m5915tFB62Ffkgm6HXynUm3Ohqv_970fqmv4o3mshajfjQ4ujNI8XoDedCdzxZCMD3ETdZEVAxXjLAJffUPuoqb1I_nTRQlYvrUkXq9pWyKOSdwuzAE66kkPZWk_5Q0wi8fxt-h962MANkCP32A2_9Y6fP5xdm9abnV-DzAr53GpB-6kkwK_f1To5tZ87WZsy96zn4DzSqpoA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562150099</pqid></control><display><type>article</type><title>T1 bias in chemical shift-encoded liver fat-fraction: Role of the flip angle</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Kühn, Jens-Peter ; Jahn, Christina ; Hernando, Diego ; Siegmund, Werner ; Hadlich, Stefan ; Mayerle, Julia ; Pfannmöller, Jörg ; Langner, Sonke ; Reeder, Scott</creator><creatorcontrib>Kühn, Jens-Peter ; Jahn, Christina ; Hernando, Diego ; Siegmund, Werner ; Hadlich, Stefan ; Mayerle, Julia ; Pfannmöller, Jörg ; Langner, Sonke ; Reeder, Scott</creatorcontrib><description>Purpose
To investigate flip angle (FA)‐dependent T1 bias in chemical shift‐encoded fat‐fraction (FF) and to evaluate a strategy for correcting this bias to achieve accurate MRI‐based estimates of liver fat with optimized signal‐to‐noise ratio (SNR).
Materials and Methods
Thirty‐three obese patients, 14 men/19 women, aged 57.3 ± 13.9 years underwent 3 Tesla (T) liver MRI including MR‐spectroscopy and four three‐echo‐complex chemical shift‐encoded MRI sequences using different FAs (1°/3°/10°/20°). FF was estimated with R2* correction and multi‐peak fat spectral modeling. The FF for each FA with and without T1 correction was compared with spectroscopy as a reference standard, using linear regression. Relative SNR of the magnitude data were assessed for each flip angle.
Results
The correlation between chemical shift‐encoded MRI and spectroscopy was high (R2 ≈ 0.9). Without T1 correction, the agreement of both techniques showed no significant differences in slope (PFlipAngle1° = 0.385/PFlipAngle3° = 0.289) using low FA. High FA resulted in significant different slopes (PFlipAngle10° = 0.016/PFlipAngle20° = 0.014. T1 bias was successfully corrected using the T1 correction strategy (slope:PFlipAngle10° = 0.387/PFlipAngle20° = 0.440). Additionally, the use of high FA (near the Ernst angle) improved the SNR of the magnitude data (FA1 vs. FA3; respectively FA1 vs. FA10 P ≤ 0.001).
Conclusion
T1 bias is a strong confounder in the assessment of liver fat using chemical shift imaging with high FA. However, using a larger flip angle with T1 correction leads to higher SNR, and residual error after T1 correction is very small. J. Magn. Reson. Imaging 2014;40:875–883. © 2013 Wiley Periodicals, Inc.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.24457</identifier><identifier>PMID: 24243439</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Adipose Tissue ; Algorithms ; Bias ; chemical shift imaging ; fatty liver ; Fatty Liver - complications ; Fatty Liver - pathology ; Female ; Fractions ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Intra-Abdominal Fat - pathology ; Liver ; Magnetic resonance imaging ; magnetic resonance spectroscopy ; Male ; Middle Aged ; Obesity - complications ; Obesity - pathology ; Reproducibility of Results ; Sensitivity and Specificity ; Spectrum analysis</subject><ispartof>Journal of magnetic resonance imaging, 2014-10, Vol.40 (4), p.875-883</ispartof><rights>2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5567-1073f5e23f4e5a509b89917d969c0dc2284eaa242402e8262995e7196d6e42023</citedby><cites>FETCH-LOGICAL-c5567-1073f5e23f4e5a509b89917d969c0dc2284eaa242402e8262995e7196d6e42023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.24457$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.24457$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24243439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kühn, Jens-Peter</creatorcontrib><creatorcontrib>Jahn, Christina</creatorcontrib><creatorcontrib>Hernando, Diego</creatorcontrib><creatorcontrib>Siegmund, Werner</creatorcontrib><creatorcontrib>Hadlich, Stefan</creatorcontrib><creatorcontrib>Mayerle, Julia</creatorcontrib><creatorcontrib>Pfannmöller, Jörg</creatorcontrib><creatorcontrib>Langner, Sonke</creatorcontrib><creatorcontrib>Reeder, Scott</creatorcontrib><title>T1 bias in chemical shift-encoded liver fat-fraction: Role of the flip angle</title><title>Journal of magnetic resonance imaging</title><addtitle>J. Magn. Reson. Imaging</addtitle><description>Purpose
To investigate flip angle (FA)‐dependent T1 bias in chemical shift‐encoded fat‐fraction (FF) and to evaluate a strategy for correcting this bias to achieve accurate MRI‐based estimates of liver fat with optimized signal‐to‐noise ratio (SNR).
Materials and Methods
Thirty‐three obese patients, 14 men/19 women, aged 57.3 ± 13.9 years underwent 3 Tesla (T) liver MRI including MR‐spectroscopy and four three‐echo‐complex chemical shift‐encoded MRI sequences using different FAs (1°/3°/10°/20°). FF was estimated with R2* correction and multi‐peak fat spectral modeling. The FF for each FA with and without T1 correction was compared with spectroscopy as a reference standard, using linear regression. Relative SNR of the magnitude data were assessed for each flip angle.
Results
The correlation between chemical shift‐encoded MRI and spectroscopy was high (R2 ≈ 0.9). Without T1 correction, the agreement of both techniques showed no significant differences in slope (PFlipAngle1° = 0.385/PFlipAngle3° = 0.289) using low FA. High FA resulted in significant different slopes (PFlipAngle10° = 0.016/PFlipAngle20° = 0.014. T1 bias was successfully corrected using the T1 correction strategy (slope:PFlipAngle10° = 0.387/PFlipAngle20° = 0.440). Additionally, the use of high FA (near the Ernst angle) improved the SNR of the magnitude data (FA1 vs. FA3; respectively FA1 vs. FA10 P ≤ 0.001).
Conclusion
T1 bias is a strong confounder in the assessment of liver fat using chemical shift imaging with high FA. However, using a larger flip angle with T1 correction leads to higher SNR, and residual error after T1 correction is very small. J. Magn. Reson. Imaging 2014;40:875–883. © 2013 Wiley Periodicals, Inc.</description><subject>Adipose Tissue</subject><subject>Algorithms</subject><subject>Bias</subject><subject>chemical shift imaging</subject><subject>fatty liver</subject><subject>Fatty Liver - complications</subject><subject>Fatty Liver - pathology</subject><subject>Female</subject><subject>Fractions</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Intra-Abdominal Fat - pathology</subject><subject>Liver</subject><subject>Magnetic resonance imaging</subject><subject>magnetic resonance spectroscopy</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Obesity - complications</subject><subject>Obesity - pathology</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Spectrum analysis</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhSNERUthwwMgS2wqpLT-jWMWSKiC0GoGRCliaXmc644HJ57amULfnoRpR4UFq2vpfufoXJ-ieEHwMcGYnqy65I8p50I-Kg6IoLSkoq4ej28sWElqLPeLpzmvMMZKcfGk2KeccsaZOihmlwQtvMnI98guofPWBJSX3g0l9Da20KLgbyAhZ4bSJWMHH_s36CIGQNGhYQnIBb9Gpr8K8KzYcyZkeH43D4tvH95fnn4sZ5-bs9N3s9IKUcmSYMmcAMocB2EEVotaKSJbVSmLW0tpzcGYKSOmUNOKKiVAElW1FXCKKTss3m5915tFB62Ffkgm6HXynUm3Ohqv_970fqmv4o3mshajfjQ4ujNI8XoDedCdzxZCMD3ETdZEVAxXjLAJffUPuoqb1I_nTRQlYvrUkXq9pWyKOSdwuzAE66kkPZWk_5Q0wi8fxt-h962MANkCP32A2_9Y6fP5xdm9abnV-DzAr53GpB-6kkwK_f1To5tZ87WZsy96zn4DzSqpoA</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Kühn, Jens-Peter</creator><creator>Jahn, Christina</creator><creator>Hernando, Diego</creator><creator>Siegmund, Werner</creator><creator>Hadlich, Stefan</creator><creator>Mayerle, Julia</creator><creator>Pfannmöller, Jörg</creator><creator>Langner, Sonke</creator><creator>Reeder, Scott</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201410</creationdate><title>T1 bias in chemical shift-encoded liver fat-fraction: Role of the flip angle</title><author>Kühn, Jens-Peter ; Jahn, Christina ; Hernando, Diego ; Siegmund, Werner ; Hadlich, Stefan ; Mayerle, Julia ; Pfannmöller, Jörg ; Langner, Sonke ; Reeder, Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5567-1073f5e23f4e5a509b89917d969c0dc2284eaa242402e8262995e7196d6e42023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adipose Tissue</topic><topic>Algorithms</topic><topic>Bias</topic><topic>chemical shift imaging</topic><topic>fatty liver</topic><topic>Fatty Liver - complications</topic><topic>Fatty Liver - pathology</topic><topic>Female</topic><topic>Fractions</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Intra-Abdominal Fat - pathology</topic><topic>Liver</topic><topic>Magnetic resonance imaging</topic><topic>magnetic resonance spectroscopy</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Obesity - complications</topic><topic>Obesity - pathology</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kühn, Jens-Peter</creatorcontrib><creatorcontrib>Jahn, Christina</creatorcontrib><creatorcontrib>Hernando, Diego</creatorcontrib><creatorcontrib>Siegmund, Werner</creatorcontrib><creatorcontrib>Hadlich, Stefan</creatorcontrib><creatorcontrib>Mayerle, Julia</creatorcontrib><creatorcontrib>Pfannmöller, Jörg</creatorcontrib><creatorcontrib>Langner, Sonke</creatorcontrib><creatorcontrib>Reeder, Scott</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kühn, Jens-Peter</au><au>Jahn, Christina</au><au>Hernando, Diego</au><au>Siegmund, Werner</au><au>Hadlich, Stefan</au><au>Mayerle, Julia</au><au>Pfannmöller, Jörg</au><au>Langner, Sonke</au><au>Reeder, Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>T1 bias in chemical shift-encoded liver fat-fraction: Role of the flip angle</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J. Magn. Reson. Imaging</addtitle><date>2014-10</date><risdate>2014</risdate><volume>40</volume><issue>4</issue><spage>875</spage><epage>883</epage><pages>875-883</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Purpose
To investigate flip angle (FA)‐dependent T1 bias in chemical shift‐encoded fat‐fraction (FF) and to evaluate a strategy for correcting this bias to achieve accurate MRI‐based estimates of liver fat with optimized signal‐to‐noise ratio (SNR).
Materials and Methods
Thirty‐three obese patients, 14 men/19 women, aged 57.3 ± 13.9 years underwent 3 Tesla (T) liver MRI including MR‐spectroscopy and four three‐echo‐complex chemical shift‐encoded MRI sequences using different FAs (1°/3°/10°/20°). FF was estimated with R2* correction and multi‐peak fat spectral modeling. The FF for each FA with and without T1 correction was compared with spectroscopy as a reference standard, using linear regression. Relative SNR of the magnitude data were assessed for each flip angle.
Results
The correlation between chemical shift‐encoded MRI and spectroscopy was high (R2 ≈ 0.9). Without T1 correction, the agreement of both techniques showed no significant differences in slope (PFlipAngle1° = 0.385/PFlipAngle3° = 0.289) using low FA. High FA resulted in significant different slopes (PFlipAngle10° = 0.016/PFlipAngle20° = 0.014. T1 bias was successfully corrected using the T1 correction strategy (slope:PFlipAngle10° = 0.387/PFlipAngle20° = 0.440). Additionally, the use of high FA (near the Ernst angle) improved the SNR of the magnitude data (FA1 vs. FA3; respectively FA1 vs. FA10 P ≤ 0.001).
Conclusion
T1 bias is a strong confounder in the assessment of liver fat using chemical shift imaging with high FA. However, using a larger flip angle with T1 correction leads to higher SNR, and residual error after T1 correction is very small. J. Magn. Reson. Imaging 2014;40:875–883. © 2013 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24243439</pmid><doi>10.1002/jmri.24457</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-1807 |
ispartof | Journal of magnetic resonance imaging, 2014-10, Vol.40 (4), p.875-883 |
issn | 1053-1807 1522-2586 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4785023 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content |
subjects | Adipose Tissue Algorithms Bias chemical shift imaging fatty liver Fatty Liver - complications Fatty Liver - pathology Female Fractions Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Intra-Abdominal Fat - pathology Liver Magnetic resonance imaging magnetic resonance spectroscopy Male Middle Aged Obesity - complications Obesity - pathology Reproducibility of Results Sensitivity and Specificity Spectrum analysis |
title | T1 bias in chemical shift-encoded liver fat-fraction: Role of the flip angle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A26%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=T1%20bias%20in%20chemical%20shift-encoded%20liver%20fat-fraction:%20Role%20of%20the%20flip%20angle&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=K%C3%BChn,%20Jens-Peter&rft.date=2014-10&rft.volume=40&rft.issue=4&rft.spage=875&rft.epage=883&rft.pages=875-883&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.24457&rft_dat=%3Cproquest_pubme%3E3433056901%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562150099&rft_id=info:pmid/24243439&rfr_iscdi=true |