T1 bias in chemical shift-encoded liver fat-fraction: Role of the flip angle

Purpose To investigate flip angle (FA)‐dependent T1 bias in chemical shift‐encoded fat‐fraction (FF) and to evaluate a strategy for correcting this bias to achieve accurate MRI‐based estimates of liver fat with optimized signal‐to‐noise ratio (SNR). Materials and Methods Thirty‐three obese patients,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2014-10, Vol.40 (4), p.875-883
Hauptverfasser: Kühn, Jens-Peter, Jahn, Christina, Hernando, Diego, Siegmund, Werner, Hadlich, Stefan, Mayerle, Julia, Pfannmöller, Jörg, Langner, Sonke, Reeder, Scott
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 883
container_issue 4
container_start_page 875
container_title Journal of magnetic resonance imaging
container_volume 40
creator Kühn, Jens-Peter
Jahn, Christina
Hernando, Diego
Siegmund, Werner
Hadlich, Stefan
Mayerle, Julia
Pfannmöller, Jörg
Langner, Sonke
Reeder, Scott
description Purpose To investigate flip angle (FA)‐dependent T1 bias in chemical shift‐encoded fat‐fraction (FF) and to evaluate a strategy for correcting this bias to achieve accurate MRI‐based estimates of liver fat with optimized signal‐to‐noise ratio (SNR). Materials and Methods Thirty‐three obese patients, 14 men/19 women, aged 57.3 ± 13.9 years underwent 3 Tesla (T) liver MRI including MR‐spectroscopy and four three‐echo‐complex chemical shift‐encoded MRI sequences using different FAs (1°/3°/10°/20°). FF was estimated with R2* correction and multi‐peak fat spectral modeling. The FF for each FA with and without T1 correction was compared with spectroscopy as a reference standard, using linear regression. Relative SNR of the magnitude data were assessed for each flip angle. Results The correlation between chemical shift‐encoded MRI and spectroscopy was high (R2 ≈ 0.9). Without T1 correction, the agreement of both techniques showed no significant differences in slope (PFlipAngle1° = 0.385/PFlipAngle3° = 0.289) using low FA. High FA resulted in significant different slopes (PFlipAngle10° = 0.016/PFlipAngle20° = 0.014. T1 bias was successfully corrected using the T1 correction strategy (slope:PFlipAngle10° = 0.387/PFlipAngle20° = 0.440). Additionally, the use of high FA (near the Ernst angle) improved the SNR of the magnitude data (FA1 vs. FA3; respectively FA1 vs. FA10 P ≤ 0.001). Conclusion T1 bias is a strong confounder in the assessment of liver fat using chemical shift imaging with high FA. However, using a larger flip angle with T1 correction leads to higher SNR, and residual error after T1 correction is very small. J. Magn. Reson. Imaging 2014;40:875–883. © 2013 Wiley Periodicals, Inc.
doi_str_mv 10.1002/jmri.24457
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4785023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3433056901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5567-1073f5e23f4e5a509b89917d969c0dc2284eaa242402e8262995e7196d6e42023</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSNERUthwwMgS2wqpLT-jWMWSKiC0GoGRCliaXmc644HJ57amULfnoRpR4UFq2vpfufoXJ-ieEHwMcGYnqy65I8p50I-Kg6IoLSkoq4ej28sWElqLPeLpzmvMMZKcfGk2KeccsaZOihmlwQtvMnI98guofPWBJSX3g0l9Da20KLgbyAhZ4bSJWMHH_s36CIGQNGhYQnIBb9Gpr8K8KzYcyZkeH43D4tvH95fnn4sZ5-bs9N3s9IKUcmSYMmcAMocB2EEVotaKSJbVSmLW0tpzcGYKSOmUNOKKiVAElW1FXCKKTss3m5915tFB62Ffkgm6HXynUm3Ohqv_970fqmv4o3mshajfjQ4ujNI8XoDedCdzxZCMD3ETdZEVAxXjLAJffUPuoqb1I_nTRQlYvrUkXq9pWyKOSdwuzAE66kkPZWk_5Q0wi8fxt-h962MANkCP32A2_9Y6fP5xdm9abnV-DzAr53GpB-6kkwK_f1To5tZ87WZsy96zn4DzSqpoA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562150099</pqid></control><display><type>article</type><title>T1 bias in chemical shift-encoded liver fat-fraction: Role of the flip angle</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Kühn, Jens-Peter ; Jahn, Christina ; Hernando, Diego ; Siegmund, Werner ; Hadlich, Stefan ; Mayerle, Julia ; Pfannmöller, Jörg ; Langner, Sonke ; Reeder, Scott</creator><creatorcontrib>Kühn, Jens-Peter ; Jahn, Christina ; Hernando, Diego ; Siegmund, Werner ; Hadlich, Stefan ; Mayerle, Julia ; Pfannmöller, Jörg ; Langner, Sonke ; Reeder, Scott</creatorcontrib><description>Purpose To investigate flip angle (FA)‐dependent T1 bias in chemical shift‐encoded fat‐fraction (FF) and to evaluate a strategy for correcting this bias to achieve accurate MRI‐based estimates of liver fat with optimized signal‐to‐noise ratio (SNR). Materials and Methods Thirty‐three obese patients, 14 men/19 women, aged 57.3 ± 13.9 years underwent 3 Tesla (T) liver MRI including MR‐spectroscopy and four three‐echo‐complex chemical shift‐encoded MRI sequences using different FAs (1°/3°/10°/20°). FF was estimated with R2* correction and multi‐peak fat spectral modeling. The FF for each FA with and without T1 correction was compared with spectroscopy as a reference standard, using linear regression. Relative SNR of the magnitude data were assessed for each flip angle. Results The correlation between chemical shift‐encoded MRI and spectroscopy was high (R2 ≈ 0.9). Without T1 correction, the agreement of both techniques showed no significant differences in slope (PFlipAngle1° = 0.385/PFlipAngle3° = 0.289) using low FA. High FA resulted in significant different slopes (PFlipAngle10° = 0.016/PFlipAngle20° = 0.014. T1 bias was successfully corrected using the T1 correction strategy (slope:PFlipAngle10° = 0.387/PFlipAngle20° = 0.440). Additionally, the use of high FA (near the Ernst angle) improved the SNR of the magnitude data (FA1 vs. FA3; respectively FA1 vs. FA10 P ≤ 0.001). Conclusion T1 bias is a strong confounder in the assessment of liver fat using chemical shift imaging with high FA. However, using a larger flip angle with T1 correction leads to higher SNR, and residual error after T1 correction is very small. J. Magn. Reson. Imaging 2014;40:875–883. © 2013 Wiley Periodicals, Inc.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.24457</identifier><identifier>PMID: 24243439</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Adipose Tissue ; Algorithms ; Bias ; chemical shift imaging ; fatty liver ; Fatty Liver - complications ; Fatty Liver - pathology ; Female ; Fractions ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Intra-Abdominal Fat - pathology ; Liver ; Magnetic resonance imaging ; magnetic resonance spectroscopy ; Male ; Middle Aged ; Obesity - complications ; Obesity - pathology ; Reproducibility of Results ; Sensitivity and Specificity ; Spectrum analysis</subject><ispartof>Journal of magnetic resonance imaging, 2014-10, Vol.40 (4), p.875-883</ispartof><rights>2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5567-1073f5e23f4e5a509b89917d969c0dc2284eaa242402e8262995e7196d6e42023</citedby><cites>FETCH-LOGICAL-c5567-1073f5e23f4e5a509b89917d969c0dc2284eaa242402e8262995e7196d6e42023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.24457$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.24457$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24243439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kühn, Jens-Peter</creatorcontrib><creatorcontrib>Jahn, Christina</creatorcontrib><creatorcontrib>Hernando, Diego</creatorcontrib><creatorcontrib>Siegmund, Werner</creatorcontrib><creatorcontrib>Hadlich, Stefan</creatorcontrib><creatorcontrib>Mayerle, Julia</creatorcontrib><creatorcontrib>Pfannmöller, Jörg</creatorcontrib><creatorcontrib>Langner, Sonke</creatorcontrib><creatorcontrib>Reeder, Scott</creatorcontrib><title>T1 bias in chemical shift-encoded liver fat-fraction: Role of the flip angle</title><title>Journal of magnetic resonance imaging</title><addtitle>J. Magn. Reson. Imaging</addtitle><description>Purpose To investigate flip angle (FA)‐dependent T1 bias in chemical shift‐encoded fat‐fraction (FF) and to evaluate a strategy for correcting this bias to achieve accurate MRI‐based estimates of liver fat with optimized signal‐to‐noise ratio (SNR). Materials and Methods Thirty‐three obese patients, 14 men/19 women, aged 57.3 ± 13.9 years underwent 3 Tesla (T) liver MRI including MR‐spectroscopy and four three‐echo‐complex chemical shift‐encoded MRI sequences using different FAs (1°/3°/10°/20°). FF was estimated with R2* correction and multi‐peak fat spectral modeling. The FF for each FA with and without T1 correction was compared with spectroscopy as a reference standard, using linear regression. Relative SNR of the magnitude data were assessed for each flip angle. Results The correlation between chemical shift‐encoded MRI and spectroscopy was high (R2 ≈ 0.9). Without T1 correction, the agreement of both techniques showed no significant differences in slope (PFlipAngle1° = 0.385/PFlipAngle3° = 0.289) using low FA. High FA resulted in significant different slopes (PFlipAngle10° = 0.016/PFlipAngle20° = 0.014. T1 bias was successfully corrected using the T1 correction strategy (slope:PFlipAngle10° = 0.387/PFlipAngle20° = 0.440). Additionally, the use of high FA (near the Ernst angle) improved the SNR of the magnitude data (FA1 vs. FA3; respectively FA1 vs. FA10 P ≤ 0.001). Conclusion T1 bias is a strong confounder in the assessment of liver fat using chemical shift imaging with high FA. However, using a larger flip angle with T1 correction leads to higher SNR, and residual error after T1 correction is very small. J. Magn. Reson. Imaging 2014;40:875–883. © 2013 Wiley Periodicals, Inc.</description><subject>Adipose Tissue</subject><subject>Algorithms</subject><subject>Bias</subject><subject>chemical shift imaging</subject><subject>fatty liver</subject><subject>Fatty Liver - complications</subject><subject>Fatty Liver - pathology</subject><subject>Female</subject><subject>Fractions</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Intra-Abdominal Fat - pathology</subject><subject>Liver</subject><subject>Magnetic resonance imaging</subject><subject>magnetic resonance spectroscopy</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Obesity - complications</subject><subject>Obesity - pathology</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Spectrum analysis</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhSNERUthwwMgS2wqpLT-jWMWSKiC0GoGRCliaXmc644HJ57amULfnoRpR4UFq2vpfufoXJ-ieEHwMcGYnqy65I8p50I-Kg6IoLSkoq4ej28sWElqLPeLpzmvMMZKcfGk2KeccsaZOihmlwQtvMnI98guofPWBJSX3g0l9Da20KLgbyAhZ4bSJWMHH_s36CIGQNGhYQnIBb9Gpr8K8KzYcyZkeH43D4tvH95fnn4sZ5-bs9N3s9IKUcmSYMmcAMocB2EEVotaKSJbVSmLW0tpzcGYKSOmUNOKKiVAElW1FXCKKTss3m5915tFB62Ffkgm6HXynUm3Ohqv_970fqmv4o3mshajfjQ4ujNI8XoDedCdzxZCMD3ETdZEVAxXjLAJffUPuoqb1I_nTRQlYvrUkXq9pWyKOSdwuzAE66kkPZWk_5Q0wi8fxt-h962MANkCP32A2_9Y6fP5xdm9abnV-DzAr53GpB-6kkwK_f1To5tZ87WZsy96zn4DzSqpoA</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Kühn, Jens-Peter</creator><creator>Jahn, Christina</creator><creator>Hernando, Diego</creator><creator>Siegmund, Werner</creator><creator>Hadlich, Stefan</creator><creator>Mayerle, Julia</creator><creator>Pfannmöller, Jörg</creator><creator>Langner, Sonke</creator><creator>Reeder, Scott</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201410</creationdate><title>T1 bias in chemical shift-encoded liver fat-fraction: Role of the flip angle</title><author>Kühn, Jens-Peter ; Jahn, Christina ; Hernando, Diego ; Siegmund, Werner ; Hadlich, Stefan ; Mayerle, Julia ; Pfannmöller, Jörg ; Langner, Sonke ; Reeder, Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5567-1073f5e23f4e5a509b89917d969c0dc2284eaa242402e8262995e7196d6e42023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adipose Tissue</topic><topic>Algorithms</topic><topic>Bias</topic><topic>chemical shift imaging</topic><topic>fatty liver</topic><topic>Fatty Liver - complications</topic><topic>Fatty Liver - pathology</topic><topic>Female</topic><topic>Fractions</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Intra-Abdominal Fat - pathology</topic><topic>Liver</topic><topic>Magnetic resonance imaging</topic><topic>magnetic resonance spectroscopy</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Obesity - complications</topic><topic>Obesity - pathology</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kühn, Jens-Peter</creatorcontrib><creatorcontrib>Jahn, Christina</creatorcontrib><creatorcontrib>Hernando, Diego</creatorcontrib><creatorcontrib>Siegmund, Werner</creatorcontrib><creatorcontrib>Hadlich, Stefan</creatorcontrib><creatorcontrib>Mayerle, Julia</creatorcontrib><creatorcontrib>Pfannmöller, Jörg</creatorcontrib><creatorcontrib>Langner, Sonke</creatorcontrib><creatorcontrib>Reeder, Scott</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kühn, Jens-Peter</au><au>Jahn, Christina</au><au>Hernando, Diego</au><au>Siegmund, Werner</au><au>Hadlich, Stefan</au><au>Mayerle, Julia</au><au>Pfannmöller, Jörg</au><au>Langner, Sonke</au><au>Reeder, Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>T1 bias in chemical shift-encoded liver fat-fraction: Role of the flip angle</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J. Magn. Reson. Imaging</addtitle><date>2014-10</date><risdate>2014</risdate><volume>40</volume><issue>4</issue><spage>875</spage><epage>883</epage><pages>875-883</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Purpose To investigate flip angle (FA)‐dependent T1 bias in chemical shift‐encoded fat‐fraction (FF) and to evaluate a strategy for correcting this bias to achieve accurate MRI‐based estimates of liver fat with optimized signal‐to‐noise ratio (SNR). Materials and Methods Thirty‐three obese patients, 14 men/19 women, aged 57.3 ± 13.9 years underwent 3 Tesla (T) liver MRI including MR‐spectroscopy and four three‐echo‐complex chemical shift‐encoded MRI sequences using different FAs (1°/3°/10°/20°). FF was estimated with R2* correction and multi‐peak fat spectral modeling. The FF for each FA with and without T1 correction was compared with spectroscopy as a reference standard, using linear regression. Relative SNR of the magnitude data were assessed for each flip angle. Results The correlation between chemical shift‐encoded MRI and spectroscopy was high (R2 ≈ 0.9). Without T1 correction, the agreement of both techniques showed no significant differences in slope (PFlipAngle1° = 0.385/PFlipAngle3° = 0.289) using low FA. High FA resulted in significant different slopes (PFlipAngle10° = 0.016/PFlipAngle20° = 0.014. T1 bias was successfully corrected using the T1 correction strategy (slope:PFlipAngle10° = 0.387/PFlipAngle20° = 0.440). Additionally, the use of high FA (near the Ernst angle) improved the SNR of the magnitude data (FA1 vs. FA3; respectively FA1 vs. FA10 P ≤ 0.001). Conclusion T1 bias is a strong confounder in the assessment of liver fat using chemical shift imaging with high FA. However, using a larger flip angle with T1 correction leads to higher SNR, and residual error after T1 correction is very small. J. Magn. Reson. Imaging 2014;40:875–883. © 2013 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24243439</pmid><doi>10.1002/jmri.24457</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2014-10, Vol.40 (4), p.875-883
issn 1053-1807
1522-2586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4785023
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content
subjects Adipose Tissue
Algorithms
Bias
chemical shift imaging
fatty liver
Fatty Liver - complications
Fatty Liver - pathology
Female
Fractions
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Intra-Abdominal Fat - pathology
Liver
Magnetic resonance imaging
magnetic resonance spectroscopy
Male
Middle Aged
Obesity - complications
Obesity - pathology
Reproducibility of Results
Sensitivity and Specificity
Spectrum analysis
title T1 bias in chemical shift-encoded liver fat-fraction: Role of the flip angle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A26%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=T1%20bias%20in%20chemical%20shift-encoded%20liver%20fat-fraction:%20Role%20of%20the%20flip%20angle&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=K%C3%BChn,%20Jens-Peter&rft.date=2014-10&rft.volume=40&rft.issue=4&rft.spage=875&rft.epage=883&rft.pages=875-883&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.24457&rft_dat=%3Cproquest_pubme%3E3433056901%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562150099&rft_id=info:pmid/24243439&rfr_iscdi=true