Innate lymphoid cells regulate intestinal epithelial cell glycosylation

Fucosylation of intestinal epithelial cells, catalyzed by fucosyltransferase 2 (Fut2), is a major glycosylation mechanism of host-microbiota symbiosis. Commensal bacteria induce epithelial fucosylation, and epithelial fucose is used as a dietary carbohydrate by many of these bacteria. However, the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2014-09, Vol.345 (6202), p.1310-1310
Hauptverfasser: Goto, Yoshiyuki, Obata, Takashi, Kunisawa, Jun, Sato, Shintaro, Ivanov, Ivaylo I., Lamichhane, Aayam, Takeyama, Natsumi, Kamioka, Mariko, Sakamoto, Mitsuo, Matsuki, Takahiro, Setoyama, Hiromi, Imaoka, Akemi, Uematsu, Satoshi, Akira, Shizuo, Domino, Steven E., Kulig, Paulina, Becher, Burkhard, Renauld, Jean-Christophe, Sasakawa, Chihiro, Umesaki, Yoshinori, Benno, Yoshimi, Kiyono, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1310
container_issue 6202
container_start_page 1310
container_title Science (American Association for the Advancement of Science)
container_volume 345
creator Goto, Yoshiyuki
Obata, Takashi
Kunisawa, Jun
Sato, Shintaro
Ivanov, Ivaylo I.
Lamichhane, Aayam
Takeyama, Natsumi
Kamioka, Mariko
Sakamoto, Mitsuo
Matsuki, Takahiro
Setoyama, Hiromi
Imaoka, Akemi
Uematsu, Satoshi
Akira, Shizuo
Domino, Steven E.
Kulig, Paulina
Becher, Burkhard
Renauld, Jean-Christophe
Sasakawa, Chihiro
Umesaki, Yoshinori
Benno, Yoshimi
Kiyono, Hiroshi
description Fucosylation of intestinal epithelial cells, catalyzed by fucosyltransferase 2 (Fut2), is a major glycosylation mechanism of host-microbiota symbiosis. Commensal bacteria induce epithelial fucosylation, and epithelial fucose is used as a dietary carbohydrate by many of these bacteria. However, the molecular and cellular mechanisms that regulate the induction of epithelial fucosylation are unknown. Here, we show that type 3 innate lymphoid cells (ILC3) induced intestinal epithelial Fut2 expression and fucosylation in mice. This induction required the cytokines interleukin-22 and lymphotoxin in a commensal bacteria-dependent and -independent manner, respectively. Disruption of intestinal fucosylation led to increased susceptibility to infection by Salmonella typhimurium. Our data reveal a role for ILC3 in shaping the gut microenvironment through the regulation of epithelial glycosylation.
doi_str_mv 10.1126/science.1254009
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4774895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24917596</jstor_id><sourcerecordid>24917596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-4a22420b839dccaf35a9bf448c3df5c0e68957638129a982fe3696368ef0c65e3</originalsourceid><addsrcrecordid>eNqFkUtPGzEUha2qVQnQdVetRmLDZsBvjzeVEAKKhNRNWVuOcydx5NipPYOUf4-nCfSxYWXL9_O5Oucg9JngC0KovCzOQ3RwQajgGOt3aEawFq2mmL1HM4yZbDusxBE6LmWNKyE0-4iOqKCES8Zn6O4-RjtAE3ab7Sr5ReMghNJkWI5hevdxgDL4aEMDWz-sIPh6naBmGXYulV3FfIqn6ENvQ4FPh_MEPd7e_Lz-3j78uLu_vnpondRkaLmllFM875heOGd7Jqye95x3ji164TDITgslWUeotrqjPTCpJZMd9NhJAewEfdvrbsf5BhYO4pBtMNvsNzbvTLLe_DuJfmWW6clwpXjVrgLnB4Gcfo3Vm9n4MvmxEdJYDK0pMcWJwm-iRGNOmegEeRsVkmjFhOIVPfsPXacx14B_U0JgTti0-3JPuZxKydC_WiTYTNWbQ_XmUH398fXvZF75l64r8GUPrMuQ8p8510SJGvIzI0a0xw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1565504130</pqid></control><display><type>article</type><title>Innate lymphoid cells regulate intestinal epithelial cell glycosylation</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Goto, Yoshiyuki ; Obata, Takashi ; Kunisawa, Jun ; Sato, Shintaro ; Ivanov, Ivaylo I. ; Lamichhane, Aayam ; Takeyama, Natsumi ; Kamioka, Mariko ; Sakamoto, Mitsuo ; Matsuki, Takahiro ; Setoyama, Hiromi ; Imaoka, Akemi ; Uematsu, Satoshi ; Akira, Shizuo ; Domino, Steven E. ; Kulig, Paulina ; Becher, Burkhard ; Renauld, Jean-Christophe ; Sasakawa, Chihiro ; Umesaki, Yoshinori ; Benno, Yoshimi ; Kiyono, Hiroshi</creator><creatorcontrib>Goto, Yoshiyuki ; Obata, Takashi ; Kunisawa, Jun ; Sato, Shintaro ; Ivanov, Ivaylo I. ; Lamichhane, Aayam ; Takeyama, Natsumi ; Kamioka, Mariko ; Sakamoto, Mitsuo ; Matsuki, Takahiro ; Setoyama, Hiromi ; Imaoka, Akemi ; Uematsu, Satoshi ; Akira, Shizuo ; Domino, Steven E. ; Kulig, Paulina ; Becher, Burkhard ; Renauld, Jean-Christophe ; Sasakawa, Chihiro ; Umesaki, Yoshinori ; Benno, Yoshimi ; Kiyono, Hiroshi</creatorcontrib><description>Fucosylation of intestinal epithelial cells, catalyzed by fucosyltransferase 2 (Fut2), is a major glycosylation mechanism of host-microbiota symbiosis. Commensal bacteria induce epithelial fucosylation, and epithelial fucose is used as a dietary carbohydrate by many of these bacteria. However, the molecular and cellular mechanisms that regulate the induction of epithelial fucosylation are unknown. Here, we show that type 3 innate lymphoid cells (ILC3) induced intestinal epithelial Fut2 expression and fucosylation in mice. This induction required the cytokines interleukin-22 and lymphotoxin in a commensal bacteria-dependent and -independent manner, respectively. Disruption of intestinal fucosylation led to increased susceptibility to infection by Salmonella typhimurium. Our data reveal a role for ILC3 in shaping the gut microenvironment through the regulation of epithelial glycosylation.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1254009</identifier><identifier>PMID: 25214634</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Animals ; Base Sequence ; Biotechnology ; Carbohydrates ; Cellular biology ; Cytokines ; Digestive system ; Disease Models, Animal ; epithelial cells ; Fucose ; Fucose - metabolism ; Fucosyltransferases - genetics ; Fucosyltransferases - metabolism ; Galactoside 2-alpha-L-fucosyltransferase ; Germ-Free Life ; Glycosylation ; Goblet Cells - enzymology ; Goblet Cells - immunology ; Goblet Cells - microbiology ; Ileum - enzymology ; Ileum - immunology ; Ileum - microbiology ; Immune system ; Immune systems ; Immunity, Innate ; Interleukin-22 ; Interleukins - immunology ; intestinal microorganisms ; intestinal mucosa ; Intestinal Mucosa - enzymology ; Intestinal Mucosa - immunology ; Intestinal Mucosa - microbiology ; Logical Thinking ; Lymphocytes - immunology ; lymphotoxin ; membrane proteins ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Microbiota - immunology ; Microorganisms ; Molecular Sequence Data ; Paneth Cells - enzymology ; Paneth Cells - immunology ; Paneth Cells - microbiology ; Proteins ; RESEARCH ARTICLE SUMMARY ; Salmonella Infections - immunology ; Salmonella Infections - microbiology ; Salmonella typhimurium ; Signal processing</subject><ispartof>Science (American Association for the Advancement of Science), 2014-09, Vol.345 (6202), p.1310-1310</ispartof><rights>Copyright © 2014 American Association for the Advancement of Science</rights><rights>Copyright © 2014, American Association for the Advancement of Science.</rights><rights>Copyright © 2014, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-4a22420b839dccaf35a9bf448c3df5c0e68957638129a982fe3696368ef0c65e3</citedby><cites>FETCH-LOGICAL-c691t-4a22420b839dccaf35a9bf448c3df5c0e68957638129a982fe3696368ef0c65e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24917596$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24917596$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25214634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goto, Yoshiyuki</creatorcontrib><creatorcontrib>Obata, Takashi</creatorcontrib><creatorcontrib>Kunisawa, Jun</creatorcontrib><creatorcontrib>Sato, Shintaro</creatorcontrib><creatorcontrib>Ivanov, Ivaylo I.</creatorcontrib><creatorcontrib>Lamichhane, Aayam</creatorcontrib><creatorcontrib>Takeyama, Natsumi</creatorcontrib><creatorcontrib>Kamioka, Mariko</creatorcontrib><creatorcontrib>Sakamoto, Mitsuo</creatorcontrib><creatorcontrib>Matsuki, Takahiro</creatorcontrib><creatorcontrib>Setoyama, Hiromi</creatorcontrib><creatorcontrib>Imaoka, Akemi</creatorcontrib><creatorcontrib>Uematsu, Satoshi</creatorcontrib><creatorcontrib>Akira, Shizuo</creatorcontrib><creatorcontrib>Domino, Steven E.</creatorcontrib><creatorcontrib>Kulig, Paulina</creatorcontrib><creatorcontrib>Becher, Burkhard</creatorcontrib><creatorcontrib>Renauld, Jean-Christophe</creatorcontrib><creatorcontrib>Sasakawa, Chihiro</creatorcontrib><creatorcontrib>Umesaki, Yoshinori</creatorcontrib><creatorcontrib>Benno, Yoshimi</creatorcontrib><creatorcontrib>Kiyono, Hiroshi</creatorcontrib><title>Innate lymphoid cells regulate intestinal epithelial cell glycosylation</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Fucosylation of intestinal epithelial cells, catalyzed by fucosyltransferase 2 (Fut2), is a major glycosylation mechanism of host-microbiota symbiosis. Commensal bacteria induce epithelial fucosylation, and epithelial fucose is used as a dietary carbohydrate by many of these bacteria. However, the molecular and cellular mechanisms that regulate the induction of epithelial fucosylation are unknown. Here, we show that type 3 innate lymphoid cells (ILC3) induced intestinal epithelial Fut2 expression and fucosylation in mice. This induction required the cytokines interleukin-22 and lymphotoxin in a commensal bacteria-dependent and -independent manner, respectively. Disruption of intestinal fucosylation led to increased susceptibility to infection by Salmonella typhimurium. Our data reveal a role for ILC3 in shaping the gut microenvironment through the regulation of epithelial glycosylation.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>Biotechnology</subject><subject>Carbohydrates</subject><subject>Cellular biology</subject><subject>Cytokines</subject><subject>Digestive system</subject><subject>Disease Models, Animal</subject><subject>epithelial cells</subject><subject>Fucose</subject><subject>Fucose - metabolism</subject><subject>Fucosyltransferases - genetics</subject><subject>Fucosyltransferases - metabolism</subject><subject>Galactoside 2-alpha-L-fucosyltransferase</subject><subject>Germ-Free Life</subject><subject>Glycosylation</subject><subject>Goblet Cells - enzymology</subject><subject>Goblet Cells - immunology</subject><subject>Goblet Cells - microbiology</subject><subject>Ileum - enzymology</subject><subject>Ileum - immunology</subject><subject>Ileum - microbiology</subject><subject>Immune system</subject><subject>Immune systems</subject><subject>Immunity, Innate</subject><subject>Interleukin-22</subject><subject>Interleukins - immunology</subject><subject>intestinal microorganisms</subject><subject>intestinal mucosa</subject><subject>Intestinal Mucosa - enzymology</subject><subject>Intestinal Mucosa - immunology</subject><subject>Intestinal Mucosa - microbiology</subject><subject>Logical Thinking</subject><subject>Lymphocytes - immunology</subject><subject>lymphotoxin</subject><subject>membrane proteins</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Mutant Strains</subject><subject>Microbiota - immunology</subject><subject>Microorganisms</subject><subject>Molecular Sequence Data</subject><subject>Paneth Cells - enzymology</subject><subject>Paneth Cells - immunology</subject><subject>Paneth Cells - microbiology</subject><subject>Proteins</subject><subject>RESEARCH ARTICLE SUMMARY</subject><subject>Salmonella Infections - immunology</subject><subject>Salmonella Infections - microbiology</subject><subject>Salmonella typhimurium</subject><subject>Signal processing</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtPGzEUha2qVQnQdVetRmLDZsBvjzeVEAKKhNRNWVuOcydx5NipPYOUf4-nCfSxYWXL9_O5Oucg9JngC0KovCzOQ3RwQajgGOt3aEawFq2mmL1HM4yZbDusxBE6LmWNKyE0-4iOqKCES8Zn6O4-RjtAE3ab7Sr5ReMghNJkWI5hevdxgDL4aEMDWz-sIPh6naBmGXYulV3FfIqn6ENvQ4FPh_MEPd7e_Lz-3j78uLu_vnpondRkaLmllFM875heOGd7Jqye95x3ji164TDITgslWUeotrqjPTCpJZMd9NhJAewEfdvrbsf5BhYO4pBtMNvsNzbvTLLe_DuJfmWW6clwpXjVrgLnB4Gcfo3Vm9n4MvmxEdJYDK0pMcWJwm-iRGNOmegEeRsVkmjFhOIVPfsPXacx14B_U0JgTti0-3JPuZxKydC_WiTYTNWbQ_XmUH398fXvZF75l64r8GUPrMuQ8p8510SJGvIzI0a0xw</recordid><startdate>20140912</startdate><enddate>20140912</enddate><creator>Goto, Yoshiyuki</creator><creator>Obata, Takashi</creator><creator>Kunisawa, Jun</creator><creator>Sato, Shintaro</creator><creator>Ivanov, Ivaylo I.</creator><creator>Lamichhane, Aayam</creator><creator>Takeyama, Natsumi</creator><creator>Kamioka, Mariko</creator><creator>Sakamoto, Mitsuo</creator><creator>Matsuki, Takahiro</creator><creator>Setoyama, Hiromi</creator><creator>Imaoka, Akemi</creator><creator>Uematsu, Satoshi</creator><creator>Akira, Shizuo</creator><creator>Domino, Steven E.</creator><creator>Kulig, Paulina</creator><creator>Becher, Burkhard</creator><creator>Renauld, Jean-Christophe</creator><creator>Sasakawa, Chihiro</creator><creator>Umesaki, Yoshinori</creator><creator>Benno, Yoshimi</creator><creator>Kiyono, Hiroshi</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140912</creationdate><title>Innate lymphoid cells regulate intestinal epithelial cell glycosylation</title><author>Goto, Yoshiyuki ; Obata, Takashi ; Kunisawa, Jun ; Sato, Shintaro ; Ivanov, Ivaylo I. ; Lamichhane, Aayam ; Takeyama, Natsumi ; Kamioka, Mariko ; Sakamoto, Mitsuo ; Matsuki, Takahiro ; Setoyama, Hiromi ; Imaoka, Akemi ; Uematsu, Satoshi ; Akira, Shizuo ; Domino, Steven E. ; Kulig, Paulina ; Becher, Burkhard ; Renauld, Jean-Christophe ; Sasakawa, Chihiro ; Umesaki, Yoshinori ; Benno, Yoshimi ; Kiyono, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-4a22420b839dccaf35a9bf448c3df5c0e68957638129a982fe3696368ef0c65e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>Biotechnology</topic><topic>Carbohydrates</topic><topic>Cellular biology</topic><topic>Cytokines</topic><topic>Digestive system</topic><topic>Disease Models, Animal</topic><topic>epithelial cells</topic><topic>Fucose</topic><topic>Fucose - metabolism</topic><topic>Fucosyltransferases - genetics</topic><topic>Fucosyltransferases - metabolism</topic><topic>Galactoside 2-alpha-L-fucosyltransferase</topic><topic>Germ-Free Life</topic><topic>Glycosylation</topic><topic>Goblet Cells - enzymology</topic><topic>Goblet Cells - immunology</topic><topic>Goblet Cells - microbiology</topic><topic>Ileum - enzymology</topic><topic>Ileum - immunology</topic><topic>Ileum - microbiology</topic><topic>Immune system</topic><topic>Immune systems</topic><topic>Immunity, Innate</topic><topic>Interleukin-22</topic><topic>Interleukins - immunology</topic><topic>intestinal microorganisms</topic><topic>intestinal mucosa</topic><topic>Intestinal Mucosa - enzymology</topic><topic>Intestinal Mucosa - immunology</topic><topic>Intestinal Mucosa - microbiology</topic><topic>Logical Thinking</topic><topic>Lymphocytes - immunology</topic><topic>lymphotoxin</topic><topic>membrane proteins</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Mutant Strains</topic><topic>Microbiota - immunology</topic><topic>Microorganisms</topic><topic>Molecular Sequence Data</topic><topic>Paneth Cells - enzymology</topic><topic>Paneth Cells - immunology</topic><topic>Paneth Cells - microbiology</topic><topic>Proteins</topic><topic>RESEARCH ARTICLE SUMMARY</topic><topic>Salmonella Infections - immunology</topic><topic>Salmonella Infections - microbiology</topic><topic>Salmonella typhimurium</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goto, Yoshiyuki</creatorcontrib><creatorcontrib>Obata, Takashi</creatorcontrib><creatorcontrib>Kunisawa, Jun</creatorcontrib><creatorcontrib>Sato, Shintaro</creatorcontrib><creatorcontrib>Ivanov, Ivaylo I.</creatorcontrib><creatorcontrib>Lamichhane, Aayam</creatorcontrib><creatorcontrib>Takeyama, Natsumi</creatorcontrib><creatorcontrib>Kamioka, Mariko</creatorcontrib><creatorcontrib>Sakamoto, Mitsuo</creatorcontrib><creatorcontrib>Matsuki, Takahiro</creatorcontrib><creatorcontrib>Setoyama, Hiromi</creatorcontrib><creatorcontrib>Imaoka, Akemi</creatorcontrib><creatorcontrib>Uematsu, Satoshi</creatorcontrib><creatorcontrib>Akira, Shizuo</creatorcontrib><creatorcontrib>Domino, Steven E.</creatorcontrib><creatorcontrib>Kulig, Paulina</creatorcontrib><creatorcontrib>Becher, Burkhard</creatorcontrib><creatorcontrib>Renauld, Jean-Christophe</creatorcontrib><creatorcontrib>Sasakawa, Chihiro</creatorcontrib><creatorcontrib>Umesaki, Yoshinori</creatorcontrib><creatorcontrib>Benno, Yoshimi</creatorcontrib><creatorcontrib>Kiyono, Hiroshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goto, Yoshiyuki</au><au>Obata, Takashi</au><au>Kunisawa, Jun</au><au>Sato, Shintaro</au><au>Ivanov, Ivaylo I.</au><au>Lamichhane, Aayam</au><au>Takeyama, Natsumi</au><au>Kamioka, Mariko</au><au>Sakamoto, Mitsuo</au><au>Matsuki, Takahiro</au><au>Setoyama, Hiromi</au><au>Imaoka, Akemi</au><au>Uematsu, Satoshi</au><au>Akira, Shizuo</au><au>Domino, Steven E.</au><au>Kulig, Paulina</au><au>Becher, Burkhard</au><au>Renauld, Jean-Christophe</au><au>Sasakawa, Chihiro</au><au>Umesaki, Yoshinori</au><au>Benno, Yoshimi</au><au>Kiyono, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Innate lymphoid cells regulate intestinal epithelial cell glycosylation</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2014-09-12</date><risdate>2014</risdate><volume>345</volume><issue>6202</issue><spage>1310</spage><epage>1310</epage><pages>1310-1310</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Fucosylation of intestinal epithelial cells, catalyzed by fucosyltransferase 2 (Fut2), is a major glycosylation mechanism of host-microbiota symbiosis. Commensal bacteria induce epithelial fucosylation, and epithelial fucose is used as a dietary carbohydrate by many of these bacteria. However, the molecular and cellular mechanisms that regulate the induction of epithelial fucosylation are unknown. Here, we show that type 3 innate lymphoid cells (ILC3) induced intestinal epithelial Fut2 expression and fucosylation in mice. This induction required the cytokines interleukin-22 and lymphotoxin in a commensal bacteria-dependent and -independent manner, respectively. Disruption of intestinal fucosylation led to increased susceptibility to infection by Salmonella typhimurium. Our data reveal a role for ILC3 in shaping the gut microenvironment through the regulation of epithelial glycosylation.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>25214634</pmid><doi>10.1126/science.1254009</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2014-09, Vol.345 (6202), p.1310-1310
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4774895
source American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE
subjects Animals
Base Sequence
Biotechnology
Carbohydrates
Cellular biology
Cytokines
Digestive system
Disease Models, Animal
epithelial cells
Fucose
Fucose - metabolism
Fucosyltransferases - genetics
Fucosyltransferases - metabolism
Galactoside 2-alpha-L-fucosyltransferase
Germ-Free Life
Glycosylation
Goblet Cells - enzymology
Goblet Cells - immunology
Goblet Cells - microbiology
Ileum - enzymology
Ileum - immunology
Ileum - microbiology
Immune system
Immune systems
Immunity, Innate
Interleukin-22
Interleukins - immunology
intestinal microorganisms
intestinal mucosa
Intestinal Mucosa - enzymology
Intestinal Mucosa - immunology
Intestinal Mucosa - microbiology
Logical Thinking
Lymphocytes - immunology
lymphotoxin
membrane proteins
Mice
Mice, Inbred BALB C
Mice, Inbred C57BL
Mice, Mutant Strains
Microbiota - immunology
Microorganisms
Molecular Sequence Data
Paneth Cells - enzymology
Paneth Cells - immunology
Paneth Cells - microbiology
Proteins
RESEARCH ARTICLE SUMMARY
Salmonella Infections - immunology
Salmonella Infections - microbiology
Salmonella typhimurium
Signal processing
title Innate lymphoid cells regulate intestinal epithelial cell glycosylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Innate%20lymphoid%20cells%20regulate%20intestinal%20epithelial%20cell%20glycosylation&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Goto,%20Yoshiyuki&rft.date=2014-09-12&rft.volume=345&rft.issue=6202&rft.spage=1310&rft.epage=1310&rft.pages=1310-1310&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1254009&rft_dat=%3Cjstor_pubme%3E24917596%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1565504130&rft_id=info:pmid/25214634&rft_jstor_id=24917596&rfr_iscdi=true