Albumin-bound nanoparticle (nab) paclitaxel exhibits enhanced paclitaxel tissue distribution and tumor penetration

Purpose nab -paclitaxel demonstrates improved clinical efficacy compared with conventional Cremophor EL (CrEL)-paclitaxel in multiple tumor types. This study explored the distinctions in drug distribution between nab -paclitaxel and CrEL-paclitaxel and the underlying mechanisms. Methods Uptake and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer chemotherapy and pharmacology 2015-10, Vol.76 (4), p.699-712
Hauptverfasser: Chen, Nianhang, Brachmann, Carrie, Liu, Xiping, Pierce, Daniel W., Dey, Joyoti, Kerwin, William S., Li, Yan, Zhou, Simon, Hou, Shihe, Carleton, Michael, Klinghoffer, Richard A., Palmisano, Maria, Chopra, Rajesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 712
container_issue 4
container_start_page 699
container_title Cancer chemotherapy and pharmacology
container_volume 76
creator Chen, Nianhang
Brachmann, Carrie
Liu, Xiping
Pierce, Daniel W.
Dey, Joyoti
Kerwin, William S.
Li, Yan
Zhou, Simon
Hou, Shihe
Carleton, Michael
Klinghoffer, Richard A.
Palmisano, Maria
Chopra, Rajesh
description Purpose nab -paclitaxel demonstrates improved clinical efficacy compared with conventional Cremophor EL (CrEL)-paclitaxel in multiple tumor types. This study explored the distinctions in drug distribution between nab -paclitaxel and CrEL-paclitaxel and the underlying mechanisms. Methods Uptake and transcytosis of paclitaxel were analyzed by vascular permeability assay across human endothelial cell monolayers. The tissue penetration of paclitaxel within tumors was evaluated by local injections into tumor xenografts and quantitative image analysis. The distribution profile of paclitaxel in solid-tumor patients was assessed using pharmacokinetic modeling and simulation. Results Live imaging demonstrated that albumin and paclitaxel were present in punctae in endothelial cells and could be observed in very close proximity, suggesting cotransport. Uptake and transport of albumin, nab -paclitaxel and paclitaxel were inhibited by clinically relevant CrEL concentrations. Further, nab -paclitaxel causes greater mitotic arrest in wider area within xenografted tumors than CrEL- or dimethyl sulfoxide-paclitaxel following local microinjection, demonstrating enhanced paclitaxel penetration and uptake by albumin within tumors. Modeling of paclitaxel distribution in patients with solid tumors indicated that nab -paclitaxel is more dependent upon transporter-mediated pathways for drug distribution into tissues than CrEL-paclitaxel. The percent dose delivered to tissue via transporter-mediated pathways is predicted to be constant with nab -paclitaxel but decrease with increasing CrEL-paclitaxel dose. Conclusions Compared with CrEL-paclitaxel, nab -paclitaxel demonstrated more efficient transport across endothelial cells, greater penetration and cytotoxic induction in xenograft tumors, and enhanced extravascular distribution in patients that are attributed to carrier-mediated transport. These observations are consistent with the distinct clinical efficacy and toxicity profile of nab -paclitaxel.
doi_str_mv 10.1007/s00280-015-2833-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4768222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3807752021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-ffae6f86c4dd79d7fbf341210fd4b2385e6dfe8c5de88a40abc0b694d877b9173</originalsourceid><addsrcrecordid>eNp1kUuLFDEUhYMoTtv6A9xIgRtdRPOspDfCMPiCATe6DnncTGeoTpVJSsZ_b5oeh3bhKpBz7rmH-yH0kpJ3lBD1vhLCNMGESsw051g-QhsqOMNEC_4YbQgXAktFxAV6VustIURQzp-iCzYyTndSblC5nNx6SBm7ec1hyDbPiy0t-QmGN9m6t8Ni_ZSavYNpgLt9cqnVAfLeZg_hXGyp1hWGkGorya0tzXmwPbKth7kMC2RoxR5_n6Mn0U4VXty_W_Tj08fvV1_w9bfPX68ur7EfydhwjBbGqEcvQlC7oKKLXFBGSQzCMa4ljCGC9jKA1lYQ6zxx404ErZTbUcW36MMpd1ndAYKH3AtMZinpYMtvM9tk_lVy2pub-ZcRatSMsR7w-j6gzD9XqM3czmvJvbOhijIhlejX3iJ6cvky11ogPmygxBwxmRMm0zGZIyYj-8yr82oPE3-5dAM7GWqX8g2Us9X_Tf0Deg2hzg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1712457414</pqid></control><display><type>article</type><title>Albumin-bound nanoparticle (nab) paclitaxel exhibits enhanced paclitaxel tissue distribution and tumor penetration</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Nianhang ; Brachmann, Carrie ; Liu, Xiping ; Pierce, Daniel W. ; Dey, Joyoti ; Kerwin, William S. ; Li, Yan ; Zhou, Simon ; Hou, Shihe ; Carleton, Michael ; Klinghoffer, Richard A. ; Palmisano, Maria ; Chopra, Rajesh</creator><creatorcontrib>Chen, Nianhang ; Brachmann, Carrie ; Liu, Xiping ; Pierce, Daniel W. ; Dey, Joyoti ; Kerwin, William S. ; Li, Yan ; Zhou, Simon ; Hou, Shihe ; Carleton, Michael ; Klinghoffer, Richard A. ; Palmisano, Maria ; Chopra, Rajesh</creatorcontrib><description>Purpose nab -paclitaxel demonstrates improved clinical efficacy compared with conventional Cremophor EL (CrEL)-paclitaxel in multiple tumor types. This study explored the distinctions in drug distribution between nab -paclitaxel and CrEL-paclitaxel and the underlying mechanisms. Methods Uptake and transcytosis of paclitaxel were analyzed by vascular permeability assay across human endothelial cell monolayers. The tissue penetration of paclitaxel within tumors was evaluated by local injections into tumor xenografts and quantitative image analysis. The distribution profile of paclitaxel in solid-tumor patients was assessed using pharmacokinetic modeling and simulation. Results Live imaging demonstrated that albumin and paclitaxel were present in punctae in endothelial cells and could be observed in very close proximity, suggesting cotransport. Uptake and transport of albumin, nab -paclitaxel and paclitaxel were inhibited by clinically relevant CrEL concentrations. Further, nab -paclitaxel causes greater mitotic arrest in wider area within xenografted tumors than CrEL- or dimethyl sulfoxide-paclitaxel following local microinjection, demonstrating enhanced paclitaxel penetration and uptake by albumin within tumors. Modeling of paclitaxel distribution in patients with solid tumors indicated that nab -paclitaxel is more dependent upon transporter-mediated pathways for drug distribution into tissues than CrEL-paclitaxel. The percent dose delivered to tissue via transporter-mediated pathways is predicted to be constant with nab -paclitaxel but decrease with increasing CrEL-paclitaxel dose. Conclusions Compared with CrEL-paclitaxel, nab -paclitaxel demonstrated more efficient transport across endothelial cells, greater penetration and cytotoxic induction in xenograft tumors, and enhanced extravascular distribution in patients that are attributed to carrier-mediated transport. These observations are consistent with the distinct clinical efficacy and toxicity profile of nab -paclitaxel.</description><identifier>ISSN: 0344-5704</identifier><identifier>EISSN: 1432-0843</identifier><identifier>DOI: 10.1007/s00280-015-2833-5</identifier><identifier>PMID: 26231955</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; Antineoplastic Agents, Phytogenic - administration &amp; dosage ; Antineoplastic Agents, Phytogenic - metabolism ; Antineoplastic Agents, Phytogenic - pharmacokinetics ; Antineoplastic Agents, Phytogenic - therapeutic use ; Biological Transport - drug effects ; Cancer Research ; Capillary Permeability - drug effects ; Carcinoma - drug therapy ; Carcinoma - metabolism ; Carcinoma - pathology ; Cell Line, Tumor ; Cells, Cultured ; Drug Delivery Systems ; Endosomes - drug effects ; Endosomes - metabolism ; Endosomes - pathology ; Endothelium, Vascular - cytology ; Endothelium, Vascular - drug effects ; Endothelium, Vascular - metabolism ; Endothelium, Vascular - pathology ; Human Umbilical Vein Endothelial Cells - cytology ; Human Umbilical Vein Endothelial Cells - drug effects ; Human Umbilical Vein Endothelial Cells - metabolism ; Humans ; Infusions, Intravenous ; Medicine ; Medicine &amp; Public Health ; Mice, Nude ; Microinjections ; Nanoparticles - chemistry ; Oncology ; Original ; Original Article ; Paclitaxel - administration &amp; dosage ; Paclitaxel - metabolism ; Paclitaxel - pharmacokinetics ; Paclitaxel - therapeutic use ; Pancreatic Neoplasms - drug therapy ; Pancreatic Neoplasms - metabolism ; Pancreatic Neoplasms - pathology ; Pharmacology/Toxicology ; Serum Albumin - chemistry ; Serum Albumin - metabolism ; Serum Albumin, Human ; Tissue Distribution ; Tubulin Modulators - administration &amp; dosage ; Tubulin Modulators - metabolism ; Tubulin Modulators - pharmacokinetics ; Tubulin Modulators - therapeutic use ; Xenograft Model Antitumor Assays</subject><ispartof>Cancer chemotherapy and pharmacology, 2015-10, Vol.76 (4), p.699-712</ispartof><rights>The Author(s) 2015</rights><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-ffae6f86c4dd79d7fbf341210fd4b2385e6dfe8c5de88a40abc0b694d877b9173</citedby><cites>FETCH-LOGICAL-c606t-ffae6f86c4dd79d7fbf341210fd4b2385e6dfe8c5de88a40abc0b694d877b9173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00280-015-2833-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00280-015-2833-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26231955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Nianhang</creatorcontrib><creatorcontrib>Brachmann, Carrie</creatorcontrib><creatorcontrib>Liu, Xiping</creatorcontrib><creatorcontrib>Pierce, Daniel W.</creatorcontrib><creatorcontrib>Dey, Joyoti</creatorcontrib><creatorcontrib>Kerwin, William S.</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Zhou, Simon</creatorcontrib><creatorcontrib>Hou, Shihe</creatorcontrib><creatorcontrib>Carleton, Michael</creatorcontrib><creatorcontrib>Klinghoffer, Richard A.</creatorcontrib><creatorcontrib>Palmisano, Maria</creatorcontrib><creatorcontrib>Chopra, Rajesh</creatorcontrib><title>Albumin-bound nanoparticle (nab) paclitaxel exhibits enhanced paclitaxel tissue distribution and tumor penetration</title><title>Cancer chemotherapy and pharmacology</title><addtitle>Cancer Chemother Pharmacol</addtitle><addtitle>Cancer Chemother Pharmacol</addtitle><description>Purpose nab -paclitaxel demonstrates improved clinical efficacy compared with conventional Cremophor EL (CrEL)-paclitaxel in multiple tumor types. This study explored the distinctions in drug distribution between nab -paclitaxel and CrEL-paclitaxel and the underlying mechanisms. Methods Uptake and transcytosis of paclitaxel were analyzed by vascular permeability assay across human endothelial cell monolayers. The tissue penetration of paclitaxel within tumors was evaluated by local injections into tumor xenografts and quantitative image analysis. The distribution profile of paclitaxel in solid-tumor patients was assessed using pharmacokinetic modeling and simulation. Results Live imaging demonstrated that albumin and paclitaxel were present in punctae in endothelial cells and could be observed in very close proximity, suggesting cotransport. Uptake and transport of albumin, nab -paclitaxel and paclitaxel were inhibited by clinically relevant CrEL concentrations. Further, nab -paclitaxel causes greater mitotic arrest in wider area within xenografted tumors than CrEL- or dimethyl sulfoxide-paclitaxel following local microinjection, demonstrating enhanced paclitaxel penetration and uptake by albumin within tumors. Modeling of paclitaxel distribution in patients with solid tumors indicated that nab -paclitaxel is more dependent upon transporter-mediated pathways for drug distribution into tissues than CrEL-paclitaxel. The percent dose delivered to tissue via transporter-mediated pathways is predicted to be constant with nab -paclitaxel but decrease with increasing CrEL-paclitaxel dose. Conclusions Compared with CrEL-paclitaxel, nab -paclitaxel demonstrated more efficient transport across endothelial cells, greater penetration and cytotoxic induction in xenograft tumors, and enhanced extravascular distribution in patients that are attributed to carrier-mediated transport. These observations are consistent with the distinct clinical efficacy and toxicity profile of nab -paclitaxel.</description><subject>Animals</subject><subject>Antineoplastic Agents, Phytogenic - administration &amp; dosage</subject><subject>Antineoplastic Agents, Phytogenic - metabolism</subject><subject>Antineoplastic Agents, Phytogenic - pharmacokinetics</subject><subject>Antineoplastic Agents, Phytogenic - therapeutic use</subject><subject>Biological Transport - drug effects</subject><subject>Cancer Research</subject><subject>Capillary Permeability - drug effects</subject><subject>Carcinoma - drug therapy</subject><subject>Carcinoma - metabolism</subject><subject>Carcinoma - pathology</subject><subject>Cell Line, Tumor</subject><subject>Cells, Cultured</subject><subject>Drug Delivery Systems</subject><subject>Endosomes - drug effects</subject><subject>Endosomes - metabolism</subject><subject>Endosomes - pathology</subject><subject>Endothelium, Vascular - cytology</subject><subject>Endothelium, Vascular - drug effects</subject><subject>Endothelium, Vascular - metabolism</subject><subject>Endothelium, Vascular - pathology</subject><subject>Human Umbilical Vein Endothelial Cells - cytology</subject><subject>Human Umbilical Vein Endothelial Cells - drug effects</subject><subject>Human Umbilical Vein Endothelial Cells - metabolism</subject><subject>Humans</subject><subject>Infusions, Intravenous</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice, Nude</subject><subject>Microinjections</subject><subject>Nanoparticles - chemistry</subject><subject>Oncology</subject><subject>Original</subject><subject>Original Article</subject><subject>Paclitaxel - administration &amp; dosage</subject><subject>Paclitaxel - metabolism</subject><subject>Paclitaxel - pharmacokinetics</subject><subject>Paclitaxel - therapeutic use</subject><subject>Pancreatic Neoplasms - drug therapy</subject><subject>Pancreatic Neoplasms - metabolism</subject><subject>Pancreatic Neoplasms - pathology</subject><subject>Pharmacology/Toxicology</subject><subject>Serum Albumin - chemistry</subject><subject>Serum Albumin - metabolism</subject><subject>Serum Albumin, Human</subject><subject>Tissue Distribution</subject><subject>Tubulin Modulators - administration &amp; dosage</subject><subject>Tubulin Modulators - metabolism</subject><subject>Tubulin Modulators - pharmacokinetics</subject><subject>Tubulin Modulators - therapeutic use</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0344-5704</issn><issn>1432-0843</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kUuLFDEUhYMoTtv6A9xIgRtdRPOspDfCMPiCATe6DnncTGeoTpVJSsZ_b5oeh3bhKpBz7rmH-yH0kpJ3lBD1vhLCNMGESsw051g-QhsqOMNEC_4YbQgXAktFxAV6VustIURQzp-iCzYyTndSblC5nNx6SBm7ec1hyDbPiy0t-QmGN9m6t8Ni_ZSavYNpgLt9cqnVAfLeZg_hXGyp1hWGkGorya0tzXmwPbKth7kMC2RoxR5_n6Mn0U4VXty_W_Tj08fvV1_w9bfPX68ur7EfydhwjBbGqEcvQlC7oKKLXFBGSQzCMa4ljCGC9jKA1lYQ6zxx404ErZTbUcW36MMpd1ndAYKH3AtMZinpYMtvM9tk_lVy2pub-ZcRatSMsR7w-j6gzD9XqM3czmvJvbOhijIhlejX3iJ6cvky11ogPmygxBwxmRMm0zGZIyYj-8yr82oPE3-5dAM7GWqX8g2Us9X_Tf0Deg2hzg</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Chen, Nianhang</creator><creator>Brachmann, Carrie</creator><creator>Liu, Xiping</creator><creator>Pierce, Daniel W.</creator><creator>Dey, Joyoti</creator><creator>Kerwin, William S.</creator><creator>Li, Yan</creator><creator>Zhou, Simon</creator><creator>Hou, Shihe</creator><creator>Carleton, Michael</creator><creator>Klinghoffer, Richard A.</creator><creator>Palmisano, Maria</creator><creator>Chopra, Rajesh</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20151001</creationdate><title>Albumin-bound nanoparticle (nab) paclitaxel exhibits enhanced paclitaxel tissue distribution and tumor penetration</title><author>Chen, Nianhang ; Brachmann, Carrie ; Liu, Xiping ; Pierce, Daniel W. ; Dey, Joyoti ; Kerwin, William S. ; Li, Yan ; Zhou, Simon ; Hou, Shihe ; Carleton, Michael ; Klinghoffer, Richard A. ; Palmisano, Maria ; Chopra, Rajesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-ffae6f86c4dd79d7fbf341210fd4b2385e6dfe8c5de88a40abc0b694d877b9173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Antineoplastic Agents, Phytogenic - administration &amp; dosage</topic><topic>Antineoplastic Agents, Phytogenic - metabolism</topic><topic>Antineoplastic Agents, Phytogenic - pharmacokinetics</topic><topic>Antineoplastic Agents, Phytogenic - therapeutic use</topic><topic>Biological Transport - drug effects</topic><topic>Cancer Research</topic><topic>Capillary Permeability - drug effects</topic><topic>Carcinoma - drug therapy</topic><topic>Carcinoma - metabolism</topic><topic>Carcinoma - pathology</topic><topic>Cell Line, Tumor</topic><topic>Cells, Cultured</topic><topic>Drug Delivery Systems</topic><topic>Endosomes - drug effects</topic><topic>Endosomes - metabolism</topic><topic>Endosomes - pathology</topic><topic>Endothelium, Vascular - cytology</topic><topic>Endothelium, Vascular - drug effects</topic><topic>Endothelium, Vascular - metabolism</topic><topic>Endothelium, Vascular - pathology</topic><topic>Human Umbilical Vein Endothelial Cells - cytology</topic><topic>Human Umbilical Vein Endothelial Cells - drug effects</topic><topic>Human Umbilical Vein Endothelial Cells - metabolism</topic><topic>Humans</topic><topic>Infusions, Intravenous</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice, Nude</topic><topic>Microinjections</topic><topic>Nanoparticles - chemistry</topic><topic>Oncology</topic><topic>Original</topic><topic>Original Article</topic><topic>Paclitaxel - administration &amp; dosage</topic><topic>Paclitaxel - metabolism</topic><topic>Paclitaxel - pharmacokinetics</topic><topic>Paclitaxel - therapeutic use</topic><topic>Pancreatic Neoplasms - drug therapy</topic><topic>Pancreatic Neoplasms - metabolism</topic><topic>Pancreatic Neoplasms - pathology</topic><topic>Pharmacology/Toxicology</topic><topic>Serum Albumin - chemistry</topic><topic>Serum Albumin - metabolism</topic><topic>Serum Albumin, Human</topic><topic>Tissue Distribution</topic><topic>Tubulin Modulators - administration &amp; dosage</topic><topic>Tubulin Modulators - metabolism</topic><topic>Tubulin Modulators - pharmacokinetics</topic><topic>Tubulin Modulators - therapeutic use</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Nianhang</creatorcontrib><creatorcontrib>Brachmann, Carrie</creatorcontrib><creatorcontrib>Liu, Xiping</creatorcontrib><creatorcontrib>Pierce, Daniel W.</creatorcontrib><creatorcontrib>Dey, Joyoti</creatorcontrib><creatorcontrib>Kerwin, William S.</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Zhou, Simon</creatorcontrib><creatorcontrib>Hou, Shihe</creatorcontrib><creatorcontrib>Carleton, Michael</creatorcontrib><creatorcontrib>Klinghoffer, Richard A.</creatorcontrib><creatorcontrib>Palmisano, Maria</creatorcontrib><creatorcontrib>Chopra, Rajesh</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer chemotherapy and pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Nianhang</au><au>Brachmann, Carrie</au><au>Liu, Xiping</au><au>Pierce, Daniel W.</au><au>Dey, Joyoti</au><au>Kerwin, William S.</au><au>Li, Yan</au><au>Zhou, Simon</au><au>Hou, Shihe</au><au>Carleton, Michael</au><au>Klinghoffer, Richard A.</au><au>Palmisano, Maria</au><au>Chopra, Rajesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Albumin-bound nanoparticle (nab) paclitaxel exhibits enhanced paclitaxel tissue distribution and tumor penetration</atitle><jtitle>Cancer chemotherapy and pharmacology</jtitle><stitle>Cancer Chemother Pharmacol</stitle><addtitle>Cancer Chemother Pharmacol</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>76</volume><issue>4</issue><spage>699</spage><epage>712</epage><pages>699-712</pages><issn>0344-5704</issn><eissn>1432-0843</eissn><abstract>Purpose nab -paclitaxel demonstrates improved clinical efficacy compared with conventional Cremophor EL (CrEL)-paclitaxel in multiple tumor types. This study explored the distinctions in drug distribution between nab -paclitaxel and CrEL-paclitaxel and the underlying mechanisms. Methods Uptake and transcytosis of paclitaxel were analyzed by vascular permeability assay across human endothelial cell monolayers. The tissue penetration of paclitaxel within tumors was evaluated by local injections into tumor xenografts and quantitative image analysis. The distribution profile of paclitaxel in solid-tumor patients was assessed using pharmacokinetic modeling and simulation. Results Live imaging demonstrated that albumin and paclitaxel were present in punctae in endothelial cells and could be observed in very close proximity, suggesting cotransport. Uptake and transport of albumin, nab -paclitaxel and paclitaxel were inhibited by clinically relevant CrEL concentrations. Further, nab -paclitaxel causes greater mitotic arrest in wider area within xenografted tumors than CrEL- or dimethyl sulfoxide-paclitaxel following local microinjection, demonstrating enhanced paclitaxel penetration and uptake by albumin within tumors. Modeling of paclitaxel distribution in patients with solid tumors indicated that nab -paclitaxel is more dependent upon transporter-mediated pathways for drug distribution into tissues than CrEL-paclitaxel. The percent dose delivered to tissue via transporter-mediated pathways is predicted to be constant with nab -paclitaxel but decrease with increasing CrEL-paclitaxel dose. Conclusions Compared with CrEL-paclitaxel, nab -paclitaxel demonstrated more efficient transport across endothelial cells, greater penetration and cytotoxic induction in xenograft tumors, and enhanced extravascular distribution in patients that are attributed to carrier-mediated transport. These observations are consistent with the distinct clinical efficacy and toxicity profile of nab -paclitaxel.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26231955</pmid><doi>10.1007/s00280-015-2833-5</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0344-5704
ispartof Cancer chemotherapy and pharmacology, 2015-10, Vol.76 (4), p.699-712
issn 0344-5704
1432-0843
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4768222
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animals
Antineoplastic Agents, Phytogenic - administration & dosage
Antineoplastic Agents, Phytogenic - metabolism
Antineoplastic Agents, Phytogenic - pharmacokinetics
Antineoplastic Agents, Phytogenic - therapeutic use
Biological Transport - drug effects
Cancer Research
Capillary Permeability - drug effects
Carcinoma - drug therapy
Carcinoma - metabolism
Carcinoma - pathology
Cell Line, Tumor
Cells, Cultured
Drug Delivery Systems
Endosomes - drug effects
Endosomes - metabolism
Endosomes - pathology
Endothelium, Vascular - cytology
Endothelium, Vascular - drug effects
Endothelium, Vascular - metabolism
Endothelium, Vascular - pathology
Human Umbilical Vein Endothelial Cells - cytology
Human Umbilical Vein Endothelial Cells - drug effects
Human Umbilical Vein Endothelial Cells - metabolism
Humans
Infusions, Intravenous
Medicine
Medicine & Public Health
Mice, Nude
Microinjections
Nanoparticles - chemistry
Oncology
Original
Original Article
Paclitaxel - administration & dosage
Paclitaxel - metabolism
Paclitaxel - pharmacokinetics
Paclitaxel - therapeutic use
Pancreatic Neoplasms - drug therapy
Pancreatic Neoplasms - metabolism
Pancreatic Neoplasms - pathology
Pharmacology/Toxicology
Serum Albumin - chemistry
Serum Albumin - metabolism
Serum Albumin, Human
Tissue Distribution
Tubulin Modulators - administration & dosage
Tubulin Modulators - metabolism
Tubulin Modulators - pharmacokinetics
Tubulin Modulators - therapeutic use
Xenograft Model Antitumor Assays
title Albumin-bound nanoparticle (nab) paclitaxel exhibits enhanced paclitaxel tissue distribution and tumor penetration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A58%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Albumin-bound%20nanoparticle%20(nab)%20paclitaxel%20exhibits%20enhanced%20paclitaxel%20tissue%20distribution%20and%20tumor%20penetration&rft.jtitle=Cancer%20chemotherapy%20and%20pharmacology&rft.au=Chen,%20Nianhang&rft.date=2015-10-01&rft.volume=76&rft.issue=4&rft.spage=699&rft.epage=712&rft.pages=699-712&rft.issn=0344-5704&rft.eissn=1432-0843&rft_id=info:doi/10.1007/s00280-015-2833-5&rft_dat=%3Cproquest_pubme%3E3807752021%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1712457414&rft_id=info:pmid/26231955&rfr_iscdi=true