Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques
Clinical evidence links arterial calcification and cardiovascular risk. Finite-element modelling of the stress distribution within atherosclerotic plaques has suggested that subcellular microcalcifications in the fibrous cap may promote material failure of the plaque, but that large calcifications c...
Gespeichert in:
Veröffentlicht in: | Nature materials 2016-03, Vol.15 (3), p.335-343 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 343 |
---|---|
container_issue | 3 |
container_start_page | 335 |
container_title | Nature materials |
container_volume | 15 |
creator | Hutcheson, Joshua D. Goettsch, Claudia Bertazzo, Sergio Maldonado, Natalia Ruiz, Jessica L. Goh, Wilson Yabusaki, Katsumi Faits, Tyler Bouten, Carlijn Franck, Gregory Quillard, Thibaut Libby, Peter Aikawa, Masanori Weinbaum, Sheldon Aikawa, Elena |
description | Clinical evidence links arterial calcification and cardiovascular risk. Finite-element modelling of the stress distribution within atherosclerotic plaques has suggested that subcellular microcalcifications in the fibrous cap may promote material failure of the plaque, but that large calcifications can stabilize it. Yet the physicochemical mechanisms underlying such mineral formation and growth in atheromata remain unknown. Here, by using three-dimensional collagen hydrogels that mimic structural features of the atherosclerotic fibrous cap, and high-resolution microscopic and spectroscopic analyses of both the hydrogels and of calcified human plaques, we demonstrate that calcific mineral formation and maturation results from a series of events involving the aggregation of calcifying extracellular vesicles, and the formation of microcalcifications and ultimately large calcification areas. We also show that calcification morphology and the plaque’s collagen content—two determinants of atherosclerotic plaque stability—are interlinked.
The formation of atherosclerotic plaques involves the aggregation of calcifying extracellular vesicles and the formation of microcalcifications. |
doi_str_mv | 10.1038/nmat4519 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4767675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793281392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c710t-f5b3817b0a03ba66678234034a811b4dc4ee1ae0185cc72ccffd54efc017c0b93</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS1ERUtB4glQJDawCPj6N9kgoaq0lSp1A2vLcW5mXCX2YCcDvA3P0ifDo06roSvkhS3dT8fnnkPIG6AfgfLmU5jsLCS0z8gJCK1qoRR9vn8DMHZMXuZ8SykDKdULcsyUlkxJcUK6CwyYfa5s6KtVij_ndRWHCn_NyTocx2W0qd4Wwo1Y95j8Fvtq8i5FZ0fnB-_s7GOofLj7Y-c1ppgLmeLsXbUZ7Y8F8ytyNNgx4-v9fUq-fz3_dnZZX99cXJ19ua6dBjrXg-x4A7qjlvLOKqV0w7igXNgGoBO9E4hgkUIjndPMuWHopcDBUdCOdi0_JZ_vdTdLN2HvMJQdRrNJfrLpt4nWm38nwa_NKm5NSakcWQTe7wVS3BmfzeTzLgQbMC7ZgG45a4C37D9Q1YDSQu1svXuC3sYlhZJEoTTlbQvyQLAkm3PC4dE3ULPr2Dx0XNC3h3s-gg-lFuDDPZDLKKwwHfz4VOwvdKyzcg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770399152</pqid></control><display><type>article</type><title>Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Hutcheson, Joshua D. ; Goettsch, Claudia ; Bertazzo, Sergio ; Maldonado, Natalia ; Ruiz, Jessica L. ; Goh, Wilson ; Yabusaki, Katsumi ; Faits, Tyler ; Bouten, Carlijn ; Franck, Gregory ; Quillard, Thibaut ; Libby, Peter ; Aikawa, Masanori ; Weinbaum, Sheldon ; Aikawa, Elena</creator><creatorcontrib>Hutcheson, Joshua D. ; Goettsch, Claudia ; Bertazzo, Sergio ; Maldonado, Natalia ; Ruiz, Jessica L. ; Goh, Wilson ; Yabusaki, Katsumi ; Faits, Tyler ; Bouten, Carlijn ; Franck, Gregory ; Quillard, Thibaut ; Libby, Peter ; Aikawa, Masanori ; Weinbaum, Sheldon ; Aikawa, Elena</creatorcontrib><description>Clinical evidence links arterial calcification and cardiovascular risk. Finite-element modelling of the stress distribution within atherosclerotic plaques has suggested that subcellular microcalcifications in the fibrous cap may promote material failure of the plaque, but that large calcifications can stabilize it. Yet the physicochemical mechanisms underlying such mineral formation and growth in atheromata remain unknown. Here, by using three-dimensional collagen hydrogels that mimic structural features of the atherosclerotic fibrous cap, and high-resolution microscopic and spectroscopic analyses of both the hydrogels and of calcified human plaques, we demonstrate that calcific mineral formation and maturation results from a series of events involving the aggregation of calcifying extracellular vesicles, and the formation of microcalcifications and ultimately large calcification areas. We also show that calcification morphology and the plaque’s collagen content—two determinants of atherosclerotic plaque stability—are interlinked.
The formation of atherosclerotic plaques involves the aggregation of calcifying extracellular vesicles and the formation of microcalcifications.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4519</identifier><identifier>PMID: 26752654</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/146 ; 639/166 ; 639/301/54 ; Animals ; Apolipoproteins E - genetics ; Apolipoproteins E - metabolism ; Atherosclerosis ; Atherosclerosis - metabolism ; Biomaterials ; Calcification ; Calcium - metabolism ; Carotid Arteries - pathology ; Collagen ; Collagen - metabolism ; Collagens ; Condensed Matter Physics ; Coronary Disease - metabolism ; Extracellular Matrix ; Extracellular Vesicles - physiology ; Failure ; Formations ; Genesis ; Health risks ; Humans ; Hydrogels ; Materials Science ; Mice ; Mice, Knockout ; Minerals ; Nanotechnology ; Optical and Electronic Materials ; Stress analysis ; Three dimensional</subject><ispartof>Nature materials, 2016-03, Vol.15 (3), p.335-343</ispartof><rights>Springer Nature Limited 2016</rights><rights>Copyright Nature Publishing Group Mar 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c710t-f5b3817b0a03ba66678234034a811b4dc4ee1ae0185cc72ccffd54efc017c0b93</citedby><cites>FETCH-LOGICAL-c710t-f5b3817b0a03ba66678234034a811b4dc4ee1ae0185cc72ccffd54efc017c0b93</cites><orcidid>0000-0002-7986-0817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat4519$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat4519$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26752654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hutcheson, Joshua D.</creatorcontrib><creatorcontrib>Goettsch, Claudia</creatorcontrib><creatorcontrib>Bertazzo, Sergio</creatorcontrib><creatorcontrib>Maldonado, Natalia</creatorcontrib><creatorcontrib>Ruiz, Jessica L.</creatorcontrib><creatorcontrib>Goh, Wilson</creatorcontrib><creatorcontrib>Yabusaki, Katsumi</creatorcontrib><creatorcontrib>Faits, Tyler</creatorcontrib><creatorcontrib>Bouten, Carlijn</creatorcontrib><creatorcontrib>Franck, Gregory</creatorcontrib><creatorcontrib>Quillard, Thibaut</creatorcontrib><creatorcontrib>Libby, Peter</creatorcontrib><creatorcontrib>Aikawa, Masanori</creatorcontrib><creatorcontrib>Weinbaum, Sheldon</creatorcontrib><creatorcontrib>Aikawa, Elena</creatorcontrib><title>Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Clinical evidence links arterial calcification and cardiovascular risk. Finite-element modelling of the stress distribution within atherosclerotic plaques has suggested that subcellular microcalcifications in the fibrous cap may promote material failure of the plaque, but that large calcifications can stabilize it. Yet the physicochemical mechanisms underlying such mineral formation and growth in atheromata remain unknown. Here, by using three-dimensional collagen hydrogels that mimic structural features of the atherosclerotic fibrous cap, and high-resolution microscopic and spectroscopic analyses of both the hydrogels and of calcified human plaques, we demonstrate that calcific mineral formation and maturation results from a series of events involving the aggregation of calcifying extracellular vesicles, and the formation of microcalcifications and ultimately large calcification areas. We also show that calcification morphology and the plaque’s collagen content—two determinants of atherosclerotic plaque stability—are interlinked.
The formation of atherosclerotic plaques involves the aggregation of calcifying extracellular vesicles and the formation of microcalcifications.</description><subject>140/146</subject><subject>639/166</subject><subject>639/301/54</subject><subject>Animals</subject><subject>Apolipoproteins E - genetics</subject><subject>Apolipoproteins E - metabolism</subject><subject>Atherosclerosis</subject><subject>Atherosclerosis - metabolism</subject><subject>Biomaterials</subject><subject>Calcification</subject><subject>Calcium - metabolism</subject><subject>Carotid Arteries - pathology</subject><subject>Collagen</subject><subject>Collagen - metabolism</subject><subject>Collagens</subject><subject>Condensed Matter Physics</subject><subject>Coronary Disease - metabolism</subject><subject>Extracellular Matrix</subject><subject>Extracellular Vesicles - physiology</subject><subject>Failure</subject><subject>Formations</subject><subject>Genesis</subject><subject>Health risks</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Materials Science</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Minerals</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Stress analysis</subject><subject>Three dimensional</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkc1u1DAUhS1ERUtB4glQJDawCPj6N9kgoaq0lSp1A2vLcW5mXCX2YCcDvA3P0ifDo06roSvkhS3dT8fnnkPIG6AfgfLmU5jsLCS0z8gJCK1qoRR9vn8DMHZMXuZ8SykDKdULcsyUlkxJcUK6CwyYfa5s6KtVij_ndRWHCn_NyTocx2W0qd4Wwo1Y95j8Fvtq8i5FZ0fnB-_s7GOofLj7Y-c1ppgLmeLsXbUZ7Y8F8ytyNNgx4-v9fUq-fz3_dnZZX99cXJ19ua6dBjrXg-x4A7qjlvLOKqV0w7igXNgGoBO9E4hgkUIjndPMuWHopcDBUdCOdi0_JZ_vdTdLN2HvMJQdRrNJfrLpt4nWm38nwa_NKm5NSakcWQTe7wVS3BmfzeTzLgQbMC7ZgG45a4C37D9Q1YDSQu1svXuC3sYlhZJEoTTlbQvyQLAkm3PC4dE3ULPr2Dx0XNC3h3s-gg-lFuDDPZDLKKwwHfz4VOwvdKyzcg</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Hutcheson, Joshua D.</creator><creator>Goettsch, Claudia</creator><creator>Bertazzo, Sergio</creator><creator>Maldonado, Natalia</creator><creator>Ruiz, Jessica L.</creator><creator>Goh, Wilson</creator><creator>Yabusaki, Katsumi</creator><creator>Faits, Tyler</creator><creator>Bouten, Carlijn</creator><creator>Franck, Gregory</creator><creator>Quillard, Thibaut</creator><creator>Libby, Peter</creator><creator>Aikawa, Masanori</creator><creator>Weinbaum, Sheldon</creator><creator>Aikawa, Elena</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7986-0817</orcidid></search><sort><creationdate>20160301</creationdate><title>Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques</title><author>Hutcheson, Joshua D. ; Goettsch, Claudia ; Bertazzo, Sergio ; Maldonado, Natalia ; Ruiz, Jessica L. ; Goh, Wilson ; Yabusaki, Katsumi ; Faits, Tyler ; Bouten, Carlijn ; Franck, Gregory ; Quillard, Thibaut ; Libby, Peter ; Aikawa, Masanori ; Weinbaum, Sheldon ; Aikawa, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c710t-f5b3817b0a03ba66678234034a811b4dc4ee1ae0185cc72ccffd54efc017c0b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>140/146</topic><topic>639/166</topic><topic>639/301/54</topic><topic>Animals</topic><topic>Apolipoproteins E - genetics</topic><topic>Apolipoproteins E - metabolism</topic><topic>Atherosclerosis</topic><topic>Atherosclerosis - metabolism</topic><topic>Biomaterials</topic><topic>Calcification</topic><topic>Calcium - metabolism</topic><topic>Carotid Arteries - pathology</topic><topic>Collagen</topic><topic>Collagen - metabolism</topic><topic>Collagens</topic><topic>Condensed Matter Physics</topic><topic>Coronary Disease - metabolism</topic><topic>Extracellular Matrix</topic><topic>Extracellular Vesicles - physiology</topic><topic>Failure</topic><topic>Formations</topic><topic>Genesis</topic><topic>Health risks</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Materials Science</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Minerals</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Stress analysis</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hutcheson, Joshua D.</creatorcontrib><creatorcontrib>Goettsch, Claudia</creatorcontrib><creatorcontrib>Bertazzo, Sergio</creatorcontrib><creatorcontrib>Maldonado, Natalia</creatorcontrib><creatorcontrib>Ruiz, Jessica L.</creatorcontrib><creatorcontrib>Goh, Wilson</creatorcontrib><creatorcontrib>Yabusaki, Katsumi</creatorcontrib><creatorcontrib>Faits, Tyler</creatorcontrib><creatorcontrib>Bouten, Carlijn</creatorcontrib><creatorcontrib>Franck, Gregory</creatorcontrib><creatorcontrib>Quillard, Thibaut</creatorcontrib><creatorcontrib>Libby, Peter</creatorcontrib><creatorcontrib>Aikawa, Masanori</creatorcontrib><creatorcontrib>Weinbaum, Sheldon</creatorcontrib><creatorcontrib>Aikawa, Elena</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hutcheson, Joshua D.</au><au>Goettsch, Claudia</au><au>Bertazzo, Sergio</au><au>Maldonado, Natalia</au><au>Ruiz, Jessica L.</au><au>Goh, Wilson</au><au>Yabusaki, Katsumi</au><au>Faits, Tyler</au><au>Bouten, Carlijn</au><au>Franck, Gregory</au><au>Quillard, Thibaut</au><au>Libby, Peter</au><au>Aikawa, Masanori</au><au>Weinbaum, Sheldon</au><au>Aikawa, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>15</volume><issue>3</issue><spage>335</spage><epage>343</epage><pages>335-343</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Clinical evidence links arterial calcification and cardiovascular risk. Finite-element modelling of the stress distribution within atherosclerotic plaques has suggested that subcellular microcalcifications in the fibrous cap may promote material failure of the plaque, but that large calcifications can stabilize it. Yet the physicochemical mechanisms underlying such mineral formation and growth in atheromata remain unknown. Here, by using three-dimensional collagen hydrogels that mimic structural features of the atherosclerotic fibrous cap, and high-resolution microscopic and spectroscopic analyses of both the hydrogels and of calcified human plaques, we demonstrate that calcific mineral formation and maturation results from a series of events involving the aggregation of calcifying extracellular vesicles, and the formation of microcalcifications and ultimately large calcification areas. We also show that calcification morphology and the plaque’s collagen content—two determinants of atherosclerotic plaque stability—are interlinked.
The formation of atherosclerotic plaques involves the aggregation of calcifying extracellular vesicles and the formation of microcalcifications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26752654</pmid><doi>10.1038/nmat4519</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7986-0817</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2016-03, Vol.15 (3), p.335-343 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4767675 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature |
subjects | 140/146 639/166 639/301/54 Animals Apolipoproteins E - genetics Apolipoproteins E - metabolism Atherosclerosis Atherosclerosis - metabolism Biomaterials Calcification Calcium - metabolism Carotid Arteries - pathology Collagen Collagen - metabolism Collagens Condensed Matter Physics Coronary Disease - metabolism Extracellular Matrix Extracellular Vesicles - physiology Failure Formations Genesis Health risks Humans Hydrogels Materials Science Mice Mice, Knockout Minerals Nanotechnology Optical and Electronic Materials Stress analysis Three dimensional |
title | Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A35%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genesis%20and%20growth%20of%20extracellular-vesicle-derived%20microcalcification%20in%C2%A0atherosclerotic%20plaques&rft.jtitle=Nature%20materials&rft.au=Hutcheson,%20Joshua%20D.&rft.date=2016-03-01&rft.volume=15&rft.issue=3&rft.spage=335&rft.epage=343&rft.pages=335-343&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4519&rft_dat=%3Cproquest_pubme%3E1793281392%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770399152&rft_id=info:pmid/26752654&rfr_iscdi=true |