Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques

Clinical evidence links arterial calcification and cardiovascular risk. Finite-element modelling of the stress distribution within atherosclerotic plaques has suggested that subcellular microcalcifications in the fibrous cap may promote material failure of the plaque, but that large calcifications c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2016-03, Vol.15 (3), p.335-343
Hauptverfasser: Hutcheson, Joshua D., Goettsch, Claudia, Bertazzo, Sergio, Maldonado, Natalia, Ruiz, Jessica L., Goh, Wilson, Yabusaki, Katsumi, Faits, Tyler, Bouten, Carlijn, Franck, Gregory, Quillard, Thibaut, Libby, Peter, Aikawa, Masanori, Weinbaum, Sheldon, Aikawa, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 343
container_issue 3
container_start_page 335
container_title Nature materials
container_volume 15
creator Hutcheson, Joshua D.
Goettsch, Claudia
Bertazzo, Sergio
Maldonado, Natalia
Ruiz, Jessica L.
Goh, Wilson
Yabusaki, Katsumi
Faits, Tyler
Bouten, Carlijn
Franck, Gregory
Quillard, Thibaut
Libby, Peter
Aikawa, Masanori
Weinbaum, Sheldon
Aikawa, Elena
description Clinical evidence links arterial calcification and cardiovascular risk. Finite-element modelling of the stress distribution within atherosclerotic plaques has suggested that subcellular microcalcifications in the fibrous cap may promote material failure of the plaque, but that large calcifications can stabilize it. Yet the physicochemical mechanisms underlying such mineral formation and growth in atheromata remain unknown. Here, by using three-dimensional collagen hydrogels that mimic structural features of the atherosclerotic fibrous cap, and high-resolution microscopic and spectroscopic analyses of both the hydrogels and of calcified human plaques, we demonstrate that calcific mineral formation and maturation results from a series of events involving the aggregation of calcifying extracellular vesicles, and the formation of microcalcifications and ultimately large calcification areas. We also show that calcification morphology and the plaque’s collagen content—two determinants of atherosclerotic plaque stability—are interlinked. The formation of atherosclerotic plaques involves the aggregation of calcifying extracellular vesicles and the formation of microcalcifications.
doi_str_mv 10.1038/nmat4519
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4767675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793281392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c710t-f5b3817b0a03ba66678234034a811b4dc4ee1ae0185cc72ccffd54efc017c0b93</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS1ERUtB4glQJDawCPj6N9kgoaq0lSp1A2vLcW5mXCX2YCcDvA3P0ifDo06roSvkhS3dT8fnnkPIG6AfgfLmU5jsLCS0z8gJCK1qoRR9vn8DMHZMXuZ8SykDKdULcsyUlkxJcUK6CwyYfa5s6KtVij_ndRWHCn_NyTocx2W0qd4Wwo1Y95j8Fvtq8i5FZ0fnB-_s7GOofLj7Y-c1ppgLmeLsXbUZ7Y8F8ytyNNgx4-v9fUq-fz3_dnZZX99cXJ19ua6dBjrXg-x4A7qjlvLOKqV0w7igXNgGoBO9E4hgkUIjndPMuWHopcDBUdCOdi0_JZ_vdTdLN2HvMJQdRrNJfrLpt4nWm38nwa_NKm5NSakcWQTe7wVS3BmfzeTzLgQbMC7ZgG45a4C37D9Q1YDSQu1svXuC3sYlhZJEoTTlbQvyQLAkm3PC4dE3ULPr2Dx0XNC3h3s-gg-lFuDDPZDLKKwwHfz4VOwvdKyzcg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770399152</pqid></control><display><type>article</type><title>Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Hutcheson, Joshua D. ; Goettsch, Claudia ; Bertazzo, Sergio ; Maldonado, Natalia ; Ruiz, Jessica L. ; Goh, Wilson ; Yabusaki, Katsumi ; Faits, Tyler ; Bouten, Carlijn ; Franck, Gregory ; Quillard, Thibaut ; Libby, Peter ; Aikawa, Masanori ; Weinbaum, Sheldon ; Aikawa, Elena</creator><creatorcontrib>Hutcheson, Joshua D. ; Goettsch, Claudia ; Bertazzo, Sergio ; Maldonado, Natalia ; Ruiz, Jessica L. ; Goh, Wilson ; Yabusaki, Katsumi ; Faits, Tyler ; Bouten, Carlijn ; Franck, Gregory ; Quillard, Thibaut ; Libby, Peter ; Aikawa, Masanori ; Weinbaum, Sheldon ; Aikawa, Elena</creatorcontrib><description>Clinical evidence links arterial calcification and cardiovascular risk. Finite-element modelling of the stress distribution within atherosclerotic plaques has suggested that subcellular microcalcifications in the fibrous cap may promote material failure of the plaque, but that large calcifications can stabilize it. Yet the physicochemical mechanisms underlying such mineral formation and growth in atheromata remain unknown. Here, by using three-dimensional collagen hydrogels that mimic structural features of the atherosclerotic fibrous cap, and high-resolution microscopic and spectroscopic analyses of both the hydrogels and of calcified human plaques, we demonstrate that calcific mineral formation and maturation results from a series of events involving the aggregation of calcifying extracellular vesicles, and the formation of microcalcifications and ultimately large calcification areas. We also show that calcification morphology and the plaque’s collagen content—two determinants of atherosclerotic plaque stability—are interlinked. The formation of atherosclerotic plaques involves the aggregation of calcifying extracellular vesicles and the formation of microcalcifications.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4519</identifier><identifier>PMID: 26752654</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/146 ; 639/166 ; 639/301/54 ; Animals ; Apolipoproteins E - genetics ; Apolipoproteins E - metabolism ; Atherosclerosis ; Atherosclerosis - metabolism ; Biomaterials ; Calcification ; Calcium - metabolism ; Carotid Arteries - pathology ; Collagen ; Collagen - metabolism ; Collagens ; Condensed Matter Physics ; Coronary Disease - metabolism ; Extracellular Matrix ; Extracellular Vesicles - physiology ; Failure ; Formations ; Genesis ; Health risks ; Humans ; Hydrogels ; Materials Science ; Mice ; Mice, Knockout ; Minerals ; Nanotechnology ; Optical and Electronic Materials ; Stress analysis ; Three dimensional</subject><ispartof>Nature materials, 2016-03, Vol.15 (3), p.335-343</ispartof><rights>Springer Nature Limited 2016</rights><rights>Copyright Nature Publishing Group Mar 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c710t-f5b3817b0a03ba66678234034a811b4dc4ee1ae0185cc72ccffd54efc017c0b93</citedby><cites>FETCH-LOGICAL-c710t-f5b3817b0a03ba66678234034a811b4dc4ee1ae0185cc72ccffd54efc017c0b93</cites><orcidid>0000-0002-7986-0817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat4519$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat4519$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26752654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hutcheson, Joshua D.</creatorcontrib><creatorcontrib>Goettsch, Claudia</creatorcontrib><creatorcontrib>Bertazzo, Sergio</creatorcontrib><creatorcontrib>Maldonado, Natalia</creatorcontrib><creatorcontrib>Ruiz, Jessica L.</creatorcontrib><creatorcontrib>Goh, Wilson</creatorcontrib><creatorcontrib>Yabusaki, Katsumi</creatorcontrib><creatorcontrib>Faits, Tyler</creatorcontrib><creatorcontrib>Bouten, Carlijn</creatorcontrib><creatorcontrib>Franck, Gregory</creatorcontrib><creatorcontrib>Quillard, Thibaut</creatorcontrib><creatorcontrib>Libby, Peter</creatorcontrib><creatorcontrib>Aikawa, Masanori</creatorcontrib><creatorcontrib>Weinbaum, Sheldon</creatorcontrib><creatorcontrib>Aikawa, Elena</creatorcontrib><title>Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Clinical evidence links arterial calcification and cardiovascular risk. Finite-element modelling of the stress distribution within atherosclerotic plaques has suggested that subcellular microcalcifications in the fibrous cap may promote material failure of the plaque, but that large calcifications can stabilize it. Yet the physicochemical mechanisms underlying such mineral formation and growth in atheromata remain unknown. Here, by using three-dimensional collagen hydrogels that mimic structural features of the atherosclerotic fibrous cap, and high-resolution microscopic and spectroscopic analyses of both the hydrogels and of calcified human plaques, we demonstrate that calcific mineral formation and maturation results from a series of events involving the aggregation of calcifying extracellular vesicles, and the formation of microcalcifications and ultimately large calcification areas. We also show that calcification morphology and the plaque’s collagen content—two determinants of atherosclerotic plaque stability—are interlinked. The formation of atherosclerotic plaques involves the aggregation of calcifying extracellular vesicles and the formation of microcalcifications.</description><subject>140/146</subject><subject>639/166</subject><subject>639/301/54</subject><subject>Animals</subject><subject>Apolipoproteins E - genetics</subject><subject>Apolipoproteins E - metabolism</subject><subject>Atherosclerosis</subject><subject>Atherosclerosis - metabolism</subject><subject>Biomaterials</subject><subject>Calcification</subject><subject>Calcium - metabolism</subject><subject>Carotid Arteries - pathology</subject><subject>Collagen</subject><subject>Collagen - metabolism</subject><subject>Collagens</subject><subject>Condensed Matter Physics</subject><subject>Coronary Disease - metabolism</subject><subject>Extracellular Matrix</subject><subject>Extracellular Vesicles - physiology</subject><subject>Failure</subject><subject>Formations</subject><subject>Genesis</subject><subject>Health risks</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Materials Science</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Minerals</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Stress analysis</subject><subject>Three dimensional</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkc1u1DAUhS1ERUtB4glQJDawCPj6N9kgoaq0lSp1A2vLcW5mXCX2YCcDvA3P0ifDo06roSvkhS3dT8fnnkPIG6AfgfLmU5jsLCS0z8gJCK1qoRR9vn8DMHZMXuZ8SykDKdULcsyUlkxJcUK6CwyYfa5s6KtVij_ndRWHCn_NyTocx2W0qd4Wwo1Y95j8Fvtq8i5FZ0fnB-_s7GOofLj7Y-c1ppgLmeLsXbUZ7Y8F8ytyNNgx4-v9fUq-fz3_dnZZX99cXJ19ua6dBjrXg-x4A7qjlvLOKqV0w7igXNgGoBO9E4hgkUIjndPMuWHopcDBUdCOdi0_JZ_vdTdLN2HvMJQdRrNJfrLpt4nWm38nwa_NKm5NSakcWQTe7wVS3BmfzeTzLgQbMC7ZgG45a4C37D9Q1YDSQu1svXuC3sYlhZJEoTTlbQvyQLAkm3PC4dE3ULPr2Dx0XNC3h3s-gg-lFuDDPZDLKKwwHfz4VOwvdKyzcg</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Hutcheson, Joshua D.</creator><creator>Goettsch, Claudia</creator><creator>Bertazzo, Sergio</creator><creator>Maldonado, Natalia</creator><creator>Ruiz, Jessica L.</creator><creator>Goh, Wilson</creator><creator>Yabusaki, Katsumi</creator><creator>Faits, Tyler</creator><creator>Bouten, Carlijn</creator><creator>Franck, Gregory</creator><creator>Quillard, Thibaut</creator><creator>Libby, Peter</creator><creator>Aikawa, Masanori</creator><creator>Weinbaum, Sheldon</creator><creator>Aikawa, Elena</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7986-0817</orcidid></search><sort><creationdate>20160301</creationdate><title>Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques</title><author>Hutcheson, Joshua D. ; Goettsch, Claudia ; Bertazzo, Sergio ; Maldonado, Natalia ; Ruiz, Jessica L. ; Goh, Wilson ; Yabusaki, Katsumi ; Faits, Tyler ; Bouten, Carlijn ; Franck, Gregory ; Quillard, Thibaut ; Libby, Peter ; Aikawa, Masanori ; Weinbaum, Sheldon ; Aikawa, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c710t-f5b3817b0a03ba66678234034a811b4dc4ee1ae0185cc72ccffd54efc017c0b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>140/146</topic><topic>639/166</topic><topic>639/301/54</topic><topic>Animals</topic><topic>Apolipoproteins E - genetics</topic><topic>Apolipoproteins E - metabolism</topic><topic>Atherosclerosis</topic><topic>Atherosclerosis - metabolism</topic><topic>Biomaterials</topic><topic>Calcification</topic><topic>Calcium - metabolism</topic><topic>Carotid Arteries - pathology</topic><topic>Collagen</topic><topic>Collagen - metabolism</topic><topic>Collagens</topic><topic>Condensed Matter Physics</topic><topic>Coronary Disease - metabolism</topic><topic>Extracellular Matrix</topic><topic>Extracellular Vesicles - physiology</topic><topic>Failure</topic><topic>Formations</topic><topic>Genesis</topic><topic>Health risks</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Materials Science</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Minerals</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Stress analysis</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hutcheson, Joshua D.</creatorcontrib><creatorcontrib>Goettsch, Claudia</creatorcontrib><creatorcontrib>Bertazzo, Sergio</creatorcontrib><creatorcontrib>Maldonado, Natalia</creatorcontrib><creatorcontrib>Ruiz, Jessica L.</creatorcontrib><creatorcontrib>Goh, Wilson</creatorcontrib><creatorcontrib>Yabusaki, Katsumi</creatorcontrib><creatorcontrib>Faits, Tyler</creatorcontrib><creatorcontrib>Bouten, Carlijn</creatorcontrib><creatorcontrib>Franck, Gregory</creatorcontrib><creatorcontrib>Quillard, Thibaut</creatorcontrib><creatorcontrib>Libby, Peter</creatorcontrib><creatorcontrib>Aikawa, Masanori</creatorcontrib><creatorcontrib>Weinbaum, Sheldon</creatorcontrib><creatorcontrib>Aikawa, Elena</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hutcheson, Joshua D.</au><au>Goettsch, Claudia</au><au>Bertazzo, Sergio</au><au>Maldonado, Natalia</au><au>Ruiz, Jessica L.</au><au>Goh, Wilson</au><au>Yabusaki, Katsumi</au><au>Faits, Tyler</au><au>Bouten, Carlijn</au><au>Franck, Gregory</au><au>Quillard, Thibaut</au><au>Libby, Peter</au><au>Aikawa, Masanori</au><au>Weinbaum, Sheldon</au><au>Aikawa, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>15</volume><issue>3</issue><spage>335</spage><epage>343</epage><pages>335-343</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Clinical evidence links arterial calcification and cardiovascular risk. Finite-element modelling of the stress distribution within atherosclerotic plaques has suggested that subcellular microcalcifications in the fibrous cap may promote material failure of the plaque, but that large calcifications can stabilize it. Yet the physicochemical mechanisms underlying such mineral formation and growth in atheromata remain unknown. Here, by using three-dimensional collagen hydrogels that mimic structural features of the atherosclerotic fibrous cap, and high-resolution microscopic and spectroscopic analyses of both the hydrogels and of calcified human plaques, we demonstrate that calcific mineral formation and maturation results from a series of events involving the aggregation of calcifying extracellular vesicles, and the formation of microcalcifications and ultimately large calcification areas. We also show that calcification morphology and the plaque’s collagen content—two determinants of atherosclerotic plaque stability—are interlinked. The formation of atherosclerotic plaques involves the aggregation of calcifying extracellular vesicles and the formation of microcalcifications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26752654</pmid><doi>10.1038/nmat4519</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7986-0817</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2016-03, Vol.15 (3), p.335-343
issn 1476-1122
1476-4660
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4767675
source MEDLINE; Springer Nature - Complete Springer Journals; Nature
subjects 140/146
639/166
639/301/54
Animals
Apolipoproteins E - genetics
Apolipoproteins E - metabolism
Atherosclerosis
Atherosclerosis - metabolism
Biomaterials
Calcification
Calcium - metabolism
Carotid Arteries - pathology
Collagen
Collagen - metabolism
Collagens
Condensed Matter Physics
Coronary Disease - metabolism
Extracellular Matrix
Extracellular Vesicles - physiology
Failure
Formations
Genesis
Health risks
Humans
Hydrogels
Materials Science
Mice
Mice, Knockout
Minerals
Nanotechnology
Optical and Electronic Materials
Stress analysis
Three dimensional
title Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A35%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genesis%20and%20growth%20of%20extracellular-vesicle-derived%20microcalcification%20in%C2%A0atherosclerotic%20plaques&rft.jtitle=Nature%20materials&rft.au=Hutcheson,%20Joshua%20D.&rft.date=2016-03-01&rft.volume=15&rft.issue=3&rft.spage=335&rft.epage=343&rft.pages=335-343&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4519&rft_dat=%3Cproquest_pubme%3E1793281392%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770399152&rft_id=info:pmid/26752654&rfr_iscdi=true