Nucleus factory on cavitation bubble for amyloid β fibril

Structural evolution from monomer to fibril of amyloid β peptide is related to pathogenic mechanism of Alzheimer disease and its acceleration is a long-running problem in drug development. This study reveals that ultrasonic cavitation bubbles behave as catalysts for nucleation of the peptide: The nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-02, Vol.6 (1), p.22015-22015, Article 22015
Hauptverfasser: Nakajima, Kichitaro, Ogi, Hirotsugu, Adachi, Kanta, Noi, Kentaro, Hirao, Masahiko, Yagi, Hisashi, Goto, Yuji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Structural evolution from monomer to fibril of amyloid β peptide is related to pathogenic mechanism of Alzheimer disease and its acceleration is a long-running problem in drug development. This study reveals that ultrasonic cavitation bubbles behave as catalysts for nucleation of the peptide: The nucleation reaction is highly dependent on frequency and pressure of acoustic wave and we discover an optimum acoustical condition, at which the reaction-rate constant for nucleation is increased by three-orders-of magnitudes. A theoretical model is proposed for explaining highly frequency and pressure dependent nucleation reaction, where monomers are captured on the bubble surface during its growth and highly condensed by subsequent bubble collapse, so that they are transiently exposed to high temperatures. Thus, the dual effects of local condensation and local heating contribute to dramatically enhance the nucleation reaction. Our model consistently reproduces the frequency and pressure dependences, supporting its essential applicability.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep22015